Subsampled factor models for asset pricing: The rise of Vasa

We propose a new method, variable subsample aggregation (VASA), for equity return prediction using a large‐dimensional set of factors. To demonstrate the effectiveness, robustness, and dimension reduction power of VASA, we perform a comparative analysis between state‐of‐the‐art machine learning algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2022-09, Vol.41 (6), p.1217-1247
Hauptverfasser: De Nard, Gianluca, Hediger, Simon, Leippold, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new method, variable subsample aggregation (VASA), for equity return prediction using a large‐dimensional set of factors. To demonstrate the effectiveness, robustness, and dimension reduction power of VASA, we perform a comparative analysis between state‐of‐the‐art machine learning algorithms. As a performance measure, we explore not only the global predictive but also the stock‐specific R2's and their distribution. While the global R2 reflects the average forecasting accuracy, we find that high variability in stock‐specific R2's can be detrimental for the portfolio performance. Since VASA shows minimal variability, portfolios formed on this method outperform the portfolios based on random forests and neural nets.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.2859