A tetrahedral DNA nanostructure functionalized paper-based platform for ultrasensitive colorimetric mercury detection

A novel tetrahedral DNA nanostructure (TDN) functionalized paper-based colorimetric sensor was developed for ultrasensitive analysis of mercury ion (Hg2+). On the paper-based platform, TDN was used as scaffold to anchor aptamer to improve the capture efficiency owing to the controllably specific ori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2022-07, Vol.362, p.131830, Article 131830
Hauptverfasser: Fu, Xiuli, Lin, Hao, Qi, Ji, Li, Fengling, Chen, Yan, Li, Bowei, Chen, Lingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel tetrahedral DNA nanostructure (TDN) functionalized paper-based colorimetric sensor was developed for ultrasensitive analysis of mercury ion (Hg2+). On the paper-based platform, TDN was used as scaffold to anchor aptamer to improve the capture efficiency owing to the controllably specific orientation, low steric hindrance effect and well-defined spacing. In the absence of Hg2+, biotinylated aptamer would bind with streptavidin-labeled HRP. Whereas, in the presence of Hg2+, aptamer would preferentially bind to Hg2+ owing to the higher binding constant of T–Hg–T than that of T–A, which consequently leading to the biotinylated aptamer releasing from TDN. After introducing TMB-H2O2 solution, strong variation of color signal could be observed. Therefore, the quantitative analysis of Hg2+ was carried out by using smartphone to monitor the color intensity on paper chip. The proposed strategy exhibits good linearity over a wide range of 10–13–10–7 M with a low detection limit of 30 fM. And this method had been successfully applied in real water samples. Our strategy provided a versatile, low-cost and user-friendly paper-based monitoring platform for rapid and ultrasensitive analysis of heavy metal ions and thus had potential applications in food safety and public health. [Display omitted] •A sensitive paper-based platform based on tetrahedral DNA nanostructure.•DNA nanostructure confers controllable anchoring aptamer in a consistently specific orientation and well-defined spacing.•Employment of high affinity of aptamer toward target mercury ion with 30 fM detection limit.•The developed platform is simplicity, rapidity, user-friendly, low cost and sensitive monitor food quality.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2022.131830