KOLMOGOROV BOUNDS FOR THE NORMAL APPROXIMATION OF THE NUMBER OF TRIANGLES IN THE ERDŐS–RÉNYI RANDOM GRAPH

We bound the error for the normal approximation of the number of triangles in the Erdős–Rényi random graph with respect to the Kolmogorov metric. Our bounds match the best available Wasserstein bounds obtained by Barbour et al. [(1989). A central limit theorem for decomposable random variables with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability in the engineering and informational sciences 2022-07, Vol.36 (3), p.747-773
1. Verfasser: Röllin, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We bound the error for the normal approximation of the number of triangles in the Erdős–Rényi random graph with respect to the Kolmogorov metric. Our bounds match the best available Wasserstein bounds obtained by Barbour et al. [(1989). A central limit theorem for decomposable random variables with applications to random graphs. Journal of Combinatorial Theory, Series B 47: 125–145], resolving a long-standing open problem. The proofs are based on a new variant of the Stein–Tikhomirov method—a combination of Stein's method and characteristic functions introduced by Tikhomirov [(1976). The rate of convergence in the central limit theorem for weakly dependent variables. Vestnik Leningradskogo Universiteta 158–159, 166].
ISSN:0269-9648
1469-8951
DOI:10.1017/S0269964821000061