Hyperparameter Tuned Deep Learning Enabled Cyberbullying Classification in Social Media

Cyberbullying (CB) is a challenging issue in social media and it becomes important to effectively identify the occurrence of CB. The recently developed deep learning (DL) models pave the way to design CB classifier models with maximum performance. At the same time, optimal hyperparameter tuning proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2022, Vol.73 (3), p.5011-5024
Hauptverfasser: Al Duhayyim, Mesfer, G. Mohamed, Heba, S. Alotaibi, Saud, Mahgoub, Hany, Mohamed, Abdullah, Motwakel, Abdelwahed, Sarwar Zamani, Abu, I. Eldesouki, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cyberbullying (CB) is a challenging issue in social media and it becomes important to effectively identify the occurrence of CB. The recently developed deep learning (DL) models pave the way to design CB classifier models with maximum performance. At the same time, optimal hyperparameter tuning process plays a vital role to enhance overall results. This study introduces a Teacher Learning Genetic Optimization with Deep Learning Enabled Cyberbullying Classification (TLGODL-CBC) model in Social Media. The proposed TLGODL-CBC model intends to identify the existence and non-existence of CB in social media context. Initially, the input data is cleaned and pre-processed to make it compatible for further processing. Followed by, independent recurrent autoencoder (IRAE) model is utilized for the recognition and classification of CBs. Finally, the TLGO algorithm is used to optimally adjust the parameters related to the IRAE model and shows the novelty of the work. To assuring the improved outcomes of the TLGODL-CBC approach, a wide range of simulations are executed and the outcomes are investigated under several aspects. The simulation outcomes make sure the improvements of the TLGODL-CBC model over recent approaches.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2022.031096