Removable Singularities for Quasilinear Elliptic Equations with Source Terms Involving the Solution and Its Gradient
This paper establishes a removable singularity theorem for the quasilinear elliptic equations with source terms like - Δ p u = a | u | q + b | ∇ u | s + c | u | σ | ∇ u | τ with nonnegative bounded Borel measurable functions a , b , c and positive numbers q , s , σ , τ . In particular, we give upp...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2022-09, Vol.53 (3), p.787-800 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper establishes a removable singularity theorem for the quasilinear elliptic equations with source terms like
-
Δ
p
u
=
a
|
u
|
q
+
b
|
∇
u
|
s
+
c
|
u
|
σ
|
∇
u
|
τ
with nonnegative bounded Borel measurable functions
a
,
b
,
c
and positive numbers
q
,
s
,
σ
,
τ
. In particular, we give upper bounds of exponents
q
,
s
,
σ
,
τ
and a sharp growth condition for nonnegative weak solutions in
R
N
\
E
to be extended to the whole of
R
N
as solutions, when
E
is a compact set satisfying a uniform Minkowski condition. |
---|---|
ISSN: | 1678-7544 1678-7714 |
DOI: | 10.1007/s00574-022-00283-y |