Removable Singularities for Quasilinear Elliptic Equations with Source Terms Involving the Solution and Its Gradient

This paper establishes a removable singularity theorem for the quasilinear elliptic equations with source terms like - Δ p u = a | u | q + b | ∇ u | s + c | u | σ | ∇ u | τ with nonnegative bounded Borel measurable functions a ,  b ,  c and positive numbers q , s , σ , τ . In particular, we give upp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2022-09, Vol.53 (3), p.787-800
1. Verfasser: Hirata, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper establishes a removable singularity theorem for the quasilinear elliptic equations with source terms like - Δ p u = a | u | q + b | ∇ u | s + c | u | σ | ∇ u | τ with nonnegative bounded Borel measurable functions a ,  b ,  c and positive numbers q , s , σ , τ . In particular, we give upper bounds of exponents q , s , σ , τ and a sharp growth condition for nonnegative weak solutions in R N \ E to be extended to the whole of R N as solutions, when E is a compact set satisfying a uniform Minkowski condition.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-022-00283-y