On the Moduli Space of Quasi-Homogeneous Functions

We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at ( C 2 , 0 ) with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous (but not homogeneous) functions with constant Henry–Parusiński i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2022-09, Vol.53 (3), p.895-908
Hauptverfasser: Câmara, Leonardo Meireles, Ruas, Maria Aparecida Soares
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at ( C 2 , 0 ) with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous (but not homogeneous) functions with constant Henry–Parusiński invariant is analytically trivial. Further, we show that there are only a finite number of distinct bi-Lipschitz classes among quasi-homogeneous functions with the same Henry–Parusiński invariant providing a maximum quota for this number. Finally, we conclude that the moduli space of bi-Lipschitz equivalent quasi-homogeneous function-germs admits an analytic structure.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-022-00287-8