On the Moduli Space of Quasi-Homogeneous Functions
We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at ( C 2 , 0 ) with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous (but not homogeneous) functions with constant Henry–Parusiński i...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2022-09, Vol.53 (3), p.895-908 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at
(
C
2
,
0
)
with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous (but not homogeneous) functions with constant Henry–Parusiński invariant is analytically trivial. Further, we show that there are only a finite number of distinct bi-Lipschitz classes among quasi-homogeneous functions with the same Henry–Parusiński invariant providing a maximum quota for this number. Finally, we conclude that the moduli space of bi-Lipschitz equivalent quasi-homogeneous function-germs admits an analytic structure. |
---|---|
ISSN: | 1678-7544 1678-7714 |
DOI: | 10.1007/s00574-022-00287-8 |