Modulation Spaces, Multipliers Associated with the Special Affine Fourier Transform
We study some fundamental properties of the special affine Fourier transform (SAFT) in connection with the Fourier analysis and time-frequency analysis. We introduce the modulation space M A r , s in connection with SAFT and prove that if a bounded linear operator between new modulation spaces commu...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2022-09, Vol.16 (6), Article 86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study some fundamental properties of the special affine Fourier transform (SAFT) in connection with the Fourier analysis and time-frequency analysis. We introduce the modulation space
M
A
r
,
s
in connection with SAFT and prove that if a bounded linear operator between new modulation spaces commutes with
A
-translation, then it is a
A
-convolution operator. We also establish Hörmander multiplier theorem and Littlewood-Paley theorem associated with the SAFT. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-022-01264-1 |