Highly flexible and sensitive wearable strain and pressure sensor based on porous graphene paper for human motion
The demand for high-performance multifunctional wearable devices drives the rapid development of sensors with flexibility, sensitivity and easy preparation. Here, we report an efficient preparation method to fabricate a wearable strain and pressure sensor based on porous graphene paper (PGP), which...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022-08, Vol.33 (22), p.17637-17648 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The demand for high-performance multifunctional wearable devices drives the rapid development of sensors with flexibility, sensitivity and easy preparation. Here, we report an efficient preparation method to fabricate a wearable strain and pressure sensor based on porous graphene paper (PGP), which is prepared by polymethylmethacrylate (PMMA) microsphere as a template. The prepared PGP-based strain and pressure sensor can detect multi-dimensional deformation and shows good flexibility even after more than 1000 s of repeated deformation cycles, while the rapid response time can be up to approximately 60 ms. Moreover, the obtained PGP-based sensor exhibits a good sensitivity that the gauge factor (GF) is up to 77 when the strain is in the range of 4–8%, much higher than other graphene materials. Importantly, the porous microstructure created by the PMMA microsphere in the PGP plays a vital role in the good comprehensive performance of the PGP-based sensor. The device shows potential applications in smart wearable devices to detect or monitor the posture and movement information of human beings. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-022-08627-6 |