Atomic layer deposition of TiO2 thin films on glass fibers for enhanced photocatalytic activity
Photocatalytic wastewater treatment is expected to become a sustainable way of eliminating toxic chemicals. Due to the surface-driven mechanism of the photocatalysis, surface area of the catalyst material plays a crucial role in the efficiency of the process, which is usually achieved by nanoparticl...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022-08, Vol.33 (22), p.18002-18013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photocatalytic wastewater treatment is expected to become a sustainable way of eliminating toxic chemicals. Due to the surface-driven mechanism of the photocatalysis, surface area of the catalyst material plays a crucial role in the efficiency of the process, which is usually achieved by nanoparticles. However, using powder materials introduces a new problem: removing the catalyst materials out of clean water. As an alternative, atomic layer deposition (ALD) can form conformal thin films on high surface area substrates providing an immobilization route with high photocatalytic activity. Textile materials are inexpensive and accessible therefore good candidates for the substrate materials. Here, we deposit thin films on TiO
2
on fiberglass fabrics and investigate the photocatalytic activity. Since the as-deposited ALD TiO
2
films are amorphous, they have very limited photocatalytic activity. Upon thermal treatment of the films after deposition, photocatalytic activity is achieved. After four hours of exposure to the solar simulator and UV lamp, TiO
2
-coated fibers demonstrated much higher photocatalytic activity than films on planar substrates previously described in the literature. The photocatalytic activity and structure of the coated fibers were investigated using XRD, XPS, UV–Vis, and PL analyses. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-022-08661-4 |