Dark soliton detection using persistent homology

Classifying images often requires manual identification of qualitative features. Machine learning approaches including convolutional neural networks can achieve accuracy comparable to human classifiers but require extensive data and computational resources to train. We show how a topological data an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2022-07, Vol.32 (7), p.073133-073133
Hauptverfasser: Leykam, Daniel, Rondón, Irving, Angelakis, Dimitris G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classifying images often requires manual identification of qualitative features. Machine learning approaches including convolutional neural networks can achieve accuracy comparable to human classifiers but require extensive data and computational resources to train. We show how a topological data analysis technique, persistent homology, can be used to rapidly and reliably identify qualitative features in experimental image data. The identified features can be used as inputs to simple supervised machine learning models, such as logistic regression models, which are easier to train. As an example, we consider the identification of dark solitons using a dataset of 6257 labeled atomic Bose–Einstein condensate density images.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0097053