Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation
We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness o...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2022-07, Vol.63 (4), p.723-734 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 4 |
container_start_page | 723 |
container_title | Siberian mathematical journal |
container_volume | 63 |
creator | Kozhanov, A. I. Shubin, V. V. |
description | We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces. |
doi_str_mv | 10.1134/S0037446622040139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695503803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695503803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-84a1dbd01c22ce19f5ddaf64eb176e869d68f61234058151f283bfc3c8c389153</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqVwAHaWWAf87MS1l1DKj1REpbZsI8c_bao0LnYiwZKbcBZORqIisUCs3mJmPr0ZhM6BXAKw9GpOCBulKeeUkpQAkwdoANmIJZJycogGvZz0-jE6iXFDCBDC5QB9TN7K2NhaW6xqg5d1-dra2saIvcPN2uK5r9qm9DVuPFZfn7d21clBNRYv1mUw-Ma3tVHhHb-oqrV4FnxR2S12PvT2p7ZqSlNubR07hqrwTAVV-KrUePLaqh58io6cqqI9-7lDtLybLMYPyfT5_nF8PU00SNEkIlVgCkNAU6otSJcZoxxPbQEjbgWXhgvHgbKUZAIycFSwwmmmhWZCQsaG6GLP3QXfdYxNvvFt6H6KOeUyywgThHUu2Lt08DEG6_JdKLddvxxI3i-d_1m6y9B9JnbeemXDL_n_0De3OoKJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695503803</pqid></control><display><type>article</type><title>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</title><source>Springer Online Journals - JUSTICE</source><creator>Kozhanov, A. I. ; Shubin, V. V.</creator><creatorcontrib>Kozhanov, A. I. ; Shubin, V. V.</creatorcontrib><description>We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446622040139</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Existence theorems ; Mathematics ; Mathematics and Statistics ; Regularization ; Sobolev space ; Uniqueness theorems</subject><ispartof>Siberian mathematical journal, 2022-07, Vol.63 (4), p.723-734</ispartof><rights>Pleiades Publishing, Ltd. 2022. Russian Text © The Author(s), 2022, published in Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 4, pp. 870–883.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-84a1dbd01c22ce19f5ddaf64eb176e869d68f61234058151f283bfc3c8c389153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446622040139$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446622040139$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kozhanov, A. I.</creatorcontrib><creatorcontrib>Shubin, V. V.</creatorcontrib><title>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.</description><subject>Boundary value problems</subject><subject>Existence theorems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularization</subject><subject>Sobolev space</subject><subject>Uniqueness theorems</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqVwAHaWWAf87MS1l1DKj1REpbZsI8c_bao0LnYiwZKbcBZORqIisUCs3mJmPr0ZhM6BXAKw9GpOCBulKeeUkpQAkwdoANmIJZJycogGvZz0-jE6iXFDCBDC5QB9TN7K2NhaW6xqg5d1-dra2saIvcPN2uK5r9qm9DVuPFZfn7d21clBNRYv1mUw-Ma3tVHhHb-oqrV4FnxR2S12PvT2p7ZqSlNubR07hqrwTAVV-KrUePLaqh58io6cqqI9-7lDtLybLMYPyfT5_nF8PU00SNEkIlVgCkNAU6otSJcZoxxPbQEjbgWXhgvHgbKUZAIycFSwwmmmhWZCQsaG6GLP3QXfdYxNvvFt6H6KOeUyywgThHUu2Lt08DEG6_JdKLddvxxI3i-d_1m6y9B9JnbeemXDL_n_0De3OoKJ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Kozhanov, A. I.</creator><creator>Shubin, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</title><author>Kozhanov, A. I. ; Shubin, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-84a1dbd01c22ce19f5ddaf64eb176e869d68f61234058151f283bfc3c8c389153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary value problems</topic><topic>Existence theorems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularization</topic><topic>Sobolev space</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozhanov, A. I.</creatorcontrib><creatorcontrib>Shubin, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozhanov, A. I.</au><au>Shubin, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446622040139</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2022-07, Vol.63 (4), p.723-734 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2695503803 |
source | Springer Online Journals - JUSTICE |
subjects | Boundary value problems Existence theorems Mathematics Mathematics and Statistics Regularization Sobolev space Uniqueness theorems |
title | Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20the%20Solution%20to%20a%C2%A0Degenerate%20Third%20Boundary%20Value%20Problem%20for%20a%C2%A0Multidimensional%20Parabolic%20Equation&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kozhanov,%20A.%20I.&rft.date=2022-07-01&rft.volume=63&rft.issue=4&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446622040139&rft_dat=%3Cproquest_cross%3E2695503803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695503803&rft_id=info:pmid/&rfr_iscdi=true |