Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation

We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2022-07, Vol.63 (4), p.723-734
Hauptverfasser: Kozhanov, A. I., Shubin, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 4
container_start_page 723
container_title Siberian mathematical journal
container_volume 63
creator Kozhanov, A. I.
Shubin, V. V.
description We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.
doi_str_mv 10.1134/S0037446622040139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695503803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695503803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-84a1dbd01c22ce19f5ddaf64eb176e869d68f61234058151f283bfc3c8c389153</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqVwAHaWWAf87MS1l1DKj1REpbZsI8c_bao0LnYiwZKbcBZORqIisUCs3mJmPr0ZhM6BXAKw9GpOCBulKeeUkpQAkwdoANmIJZJycogGvZz0-jE6iXFDCBDC5QB9TN7K2NhaW6xqg5d1-dra2saIvcPN2uK5r9qm9DVuPFZfn7d21clBNRYv1mUw-Ma3tVHhHb-oqrV4FnxR2S12PvT2p7ZqSlNubR07hqrwTAVV-KrUePLaqh58io6cqqI9-7lDtLybLMYPyfT5_nF8PU00SNEkIlVgCkNAU6otSJcZoxxPbQEjbgWXhgvHgbKUZAIycFSwwmmmhWZCQsaG6GLP3QXfdYxNvvFt6H6KOeUyywgThHUu2Lt08DEG6_JdKLddvxxI3i-d_1m6y9B9JnbeemXDL_n_0De3OoKJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695503803</pqid></control><display><type>article</type><title>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</title><source>Springer Online Journals - JUSTICE</source><creator>Kozhanov, A. I. ; Shubin, V. V.</creator><creatorcontrib>Kozhanov, A. I. ; Shubin, V. V.</creatorcontrib><description>We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446622040139</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Existence theorems ; Mathematics ; Mathematics and Statistics ; Regularization ; Sobolev space ; Uniqueness theorems</subject><ispartof>Siberian mathematical journal, 2022-07, Vol.63 (4), p.723-734</ispartof><rights>Pleiades Publishing, Ltd. 2022. Russian Text © The Author(s), 2022, published in Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 4, pp. 870–883.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-84a1dbd01c22ce19f5ddaf64eb176e869d68f61234058151f283bfc3c8c389153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446622040139$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446622040139$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kozhanov, A. I.</creatorcontrib><creatorcontrib>Shubin, V. V.</creatorcontrib><title>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.</description><subject>Boundary value problems</subject><subject>Existence theorems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularization</subject><subject>Sobolev space</subject><subject>Uniqueness theorems</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqVwAHaWWAf87MS1l1DKj1REpbZsI8c_bao0LnYiwZKbcBZORqIisUCs3mJmPr0ZhM6BXAKw9GpOCBulKeeUkpQAkwdoANmIJZJycogGvZz0-jE6iXFDCBDC5QB9TN7K2NhaW6xqg5d1-dra2saIvcPN2uK5r9qm9DVuPFZfn7d21clBNRYv1mUw-Ma3tVHhHb-oqrV4FnxR2S12PvT2p7ZqSlNubR07hqrwTAVV-KrUePLaqh58io6cqqI9-7lDtLybLMYPyfT5_nF8PU00SNEkIlVgCkNAU6otSJcZoxxPbQEjbgWXhgvHgbKUZAIycFSwwmmmhWZCQsaG6GLP3QXfdYxNvvFt6H6KOeUyywgThHUu2Lt08DEG6_JdKLddvxxI3i-d_1m6y9B9JnbeemXDL_n_0De3OoKJ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Kozhanov, A. I.</creator><creator>Shubin, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</title><author>Kozhanov, A. I. ; Shubin, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-84a1dbd01c22ce19f5ddaf64eb176e869d68f61234058151f283bfc3c8c389153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary value problems</topic><topic>Existence theorems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularization</topic><topic>Sobolev space</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozhanov, A. I.</creatorcontrib><creatorcontrib>Shubin, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozhanov, A. I.</au><au>Shubin, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446622040139</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2022-07, Vol.63 (4), p.723-734
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2695503803
source Springer Online Journals - JUSTICE
subjects Boundary value problems
Existence theorems
Mathematics
Mathematics and Statistics
Regularization
Sobolev space
Uniqueness theorems
title Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20the%20Solution%20to%20a%C2%A0Degenerate%20Third%20Boundary%20Value%20Problem%20for%20a%C2%A0Multidimensional%20Parabolic%20Equation&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kozhanov,%20A.%20I.&rft.date=2022-07-01&rft.volume=63&rft.issue=4&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446622040139&rft_dat=%3Cproquest_cross%3E2695503803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695503803&rft_id=info:pmid/&rfr_iscdi=true