Existence and Uniqueness of the Solution to a Degenerate Third Boundary Value Problem for a Multidimensional Parabolic Equation
We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness o...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2022-07, Vol.63 (4), p.723-734 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446622040139 |