Fractional convexity

We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2022-08, Vol.383 (3-4), p.1687-1719
Hauptverfasser: Del Pezzo, Leandro M., Quaas, Alexander, Rossi, Julio D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-021-02254-y