Benchmark time series data sets for PyTorch -- the torchtime package

The development of models for Electronic Health Record data is an area of active research featuring a small number of public benchmark data sets. Researchers typically write custom data processing code but this hinders reproducibility and can introduce errors. The Python package torchtime provides r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Darke, Philip, Missier, Paolo, Bacardit, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of models for Electronic Health Record data is an area of active research featuring a small number of public benchmark data sets. Researchers typically write custom data processing code but this hinders reproducibility and can introduce errors. The Python package torchtime provides reproducible implementations of commonly used PhysioNet and UEA & UCR time series classification repository data sets for PyTorch. Features are provided for working with irregularly sampled and partially observed time series of unequal length. It aims to simplify access to PhysioNet data and enable fair comparisons of models in this exciting area of research.
ISSN:2331-8422