Contractible Subgraphs of Contraction Critically Quasi \(5\)-Connected Graphs

Let \(G\) be a contraction critically quasi \(5\)-connected graph on at least \(14\) vertices. If there is a vertex \(x\in V_{4}(G)\) such that \(G[N_{G}(x)]\cong K_{1,3}\) or \(G[N_{G}(x)]\cong C_{4}\), then \(G\) has a quasi \(5\)-contractible subgraph \(H\) such that \(0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Kou, Shuai, Qin, Chengfu, Yang, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(G\) be a contraction critically quasi \(5\)-connected graph on at least \(14\) vertices. If there is a vertex \(x\in V_{4}(G)\) such that \(G[N_{G}(x)]\cong K_{1,3}\) or \(G[N_{G}(x)]\cong C_{4}\), then \(G\) has a quasi \(5\)-contractible subgraph \(H\) such that \(0
ISSN:2331-8422