Contractible Subgraphs of Contraction Critically Quasi \(5\)-Connected Graphs
Let \(G\) be a contraction critically quasi \(5\)-connected graph on at least \(14\) vertices. If there is a vertex \(x\in V_{4}(G)\) such that \(G[N_{G}(x)]\cong K_{1,3}\) or \(G[N_{G}(x)]\cong C_{4}\), then \(G\) has a quasi \(5\)-contractible subgraph \(H\) such that \(0
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(G\) be a contraction critically quasi \(5\)-connected graph on at least \(14\) vertices. If there is a vertex \(x\in V_{4}(G)\) such that \(G[N_{G}(x)]\cong K_{1,3}\) or \(G[N_{G}(x)]\cong C_{4}\), then \(G\) has a quasi \(5\)-contractible subgraph \(H\) such that \(0 |
---|---|
ISSN: | 2331-8422 |