The Terwilliger algebra of the halved folded 2n-cube from the viewpoint of its automorphism group action
Let 1 2 H ¯ ( 2 n , 2 ) denote the halved folded 2 n -cube with vertex set X and let T : = T ( x ) denote the Terwilliger algebra of 1 2 H ¯ ( 2 n , 2 ) with respect to a fixed vertex x . In this paper, we assume n ≥ 4 and show that T coincides with the centralizer algebra of the stabilizer of x in...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2022-08, Vol.56 (1), p.229-248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
1
2
H
¯
(
2
n
,
2
)
denote the halved folded 2
n
-cube with vertex set
X
and let
T
:
=
T
(
x
)
denote the Terwilliger algebra of
1
2
H
¯
(
2
n
,
2
)
with respect to a fixed vertex
x
. In this paper, we assume
n
≥
4
and show that
T
coincides with the centralizer algebra of the stabilizer of
x
in the automorphism group of
1
2
H
¯
(
2
n
,
2
)
by considering the action of this automorphism group on the set
X
×
X
×
X
. Then, we further describe the structure of
T
for the case
n
=
2
D
and
D
≥
3
. The decomposition of
T
will be given by using the homogeneous components of
V
:
=
C
X
, each of which is a nonzero subspace of
V
spanned by the irreducible
T
-modules that are isomorphic. Moreover, we display a computable basis for every homogeneous component of
V
. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-021-01106-x |