The Terwilliger algebra of the halved folded 2n-cube from the viewpoint of its automorphism group action

Let 1 2 H ¯ ( 2 n , 2 ) denote the halved folded 2 n -cube with vertex set X and let T : = T ( x ) denote the Terwilliger algebra of 1 2 H ¯ ( 2 n , 2 ) with respect to a fixed vertex x . In this paper, we assume n ≥ 4 and show that T coincides with the centralizer algebra of the stabilizer of x in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2022-08, Vol.56 (1), p.229-248
Hauptverfasser: Cao, Nanbin, Chen, Sibo, Kang, Na, Hou, Lihang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let 1 2 H ¯ ( 2 n , 2 ) denote the halved folded 2 n -cube with vertex set X and let T : = T ( x ) denote the Terwilliger algebra of 1 2 H ¯ ( 2 n , 2 ) with respect to a fixed vertex x . In this paper, we assume n ≥ 4 and show that T coincides with the centralizer algebra of the stabilizer of x in the automorphism group of 1 2 H ¯ ( 2 n , 2 ) by considering the action of this automorphism group on the set X × X × X . Then, we further describe the structure of T for the case n = 2 D and D ≥ 3 . The decomposition of T will be given by using the homogeneous components of V : = C X , each of which is a nonzero subspace of V spanned by the irreducible T -modules that are isomorphic. Moreover, we display a computable basis for every homogeneous component of V .
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-021-01106-x