Nonlocal Harnack inequalities in the Heisenberg group
We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase trans...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 61 |
creator | Palatucci, Giampiero Piccinini, Mirco |
description | We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group
H
n
, whose prototype is the Dirichlet problem for the
p
-fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is
p
=
2
, we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent
s
goes to 1. |
doi_str_mv | 10.1007/s00526-022-02301-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695011237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695011237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZpGmToyzqCote9BySOF271rabtAf_vXErePMwDA--93g8xi4RrhGguokAkpc5cJ5OAOb6iC2wEEkqIY_ZAnRR5Lws9Sk7i3EHgFLxYsHkU9-1vbdttrahs_4jazraT7ZtxoZiEtn4Ttmamkido7DNtqGfhnN2Uts20sXvX7LX-7uX1TrfPD88rm43uRelGHOPQMoJ6UQqpoQuLCIpr6muhCtr520lpVPSey8tQuWdhxpra990VViFYsmu5twh9PuJ4mh2_ZRqttHwUktA5KJKFJ8pH_oYA9VmCM2nDV8GwfzMY-Z5TGphDvMYnUxiNsUEd1sKf9H_uL4BmqxnUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695011237</pqid></control><display><type>article</type><title>Nonlocal Harnack inequalities in the Heisenberg group</title><source>SpringerNature Journals</source><creator>Palatucci, Giampiero ; Piccinini, Mirco</creator><creatorcontrib>Palatucci, Giampiero ; Piccinini, Mirco</creatorcontrib><description>We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group
H
n
, whose prototype is the Dirichlet problem for the
p
-fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is
p
=
2
, we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent
s
goes to 1.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02301-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Euclidean geometry ; Ferromagnetism ; Inequalities ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Phase transitions ; Quantum mechanics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 185</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</citedby><cites>FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</cites><orcidid>0000-0002-3706-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02301-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02301-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Palatucci, Giampiero</creatorcontrib><creatorcontrib>Piccinini, Mirco</creatorcontrib><title>Nonlocal Harnack inequalities in the Heisenberg group</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group
H
n
, whose prototype is the Dirichlet problem for the
p
-fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is
p
=
2
, we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent
s
goes to 1.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Euclidean geometry</subject><subject>Ferromagnetism</subject><subject>Inequalities</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Phase transitions</subject><subject>Quantum mechanics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZpGmToyzqCote9BySOF271rabtAf_vXErePMwDA--93g8xi4RrhGguokAkpc5cJ5OAOb6iC2wEEkqIY_ZAnRR5Lws9Sk7i3EHgFLxYsHkU9-1vbdttrahs_4jazraT7ZtxoZiEtn4Ttmamkido7DNtqGfhnN2Uts20sXvX7LX-7uX1TrfPD88rm43uRelGHOPQMoJ6UQqpoQuLCIpr6muhCtr520lpVPSey8tQuWdhxpra990VViFYsmu5twh9PuJ4mh2_ZRqttHwUktA5KJKFJ8pH_oYA9VmCM2nDV8GwfzMY-Z5TGphDvMYnUxiNsUEd1sKf9H_uL4BmqxnUg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Palatucci, Giampiero</creator><creator>Piccinini, Mirco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3706-9349</orcidid></search><sort><creationdate>20221001</creationdate><title>Nonlocal Harnack inequalities in the Heisenberg group</title><author>Palatucci, Giampiero ; Piccinini, Mirco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Euclidean geometry</topic><topic>Ferromagnetism</topic><topic>Inequalities</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Phase transitions</topic><topic>Quantum mechanics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palatucci, Giampiero</creatorcontrib><creatorcontrib>Piccinini, Mirco</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palatucci, Giampiero</au><au>Piccinini, Mirco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Harnack inequalities in the Heisenberg group</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>61</volume><issue>5</issue><artnum>185</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group
H
n
, whose prototype is the Dirichlet problem for the
p
-fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is
p
=
2
, we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent
s
goes to 1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02301-9</doi><orcidid>https://orcid.org/0000-0002-3706-9349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 185 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2695011237 |
source | SpringerNature Journals |
subjects | Analysis Asymptotic properties Calculus of Variations and Optimal Control Optimization Control Dirichlet problem Euclidean geometry Ferromagnetism Inequalities Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators (mathematics) Phase transitions Quantum mechanics Systems Theory Theoretical |
title | Nonlocal Harnack inequalities in the Heisenberg group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Harnack%20inequalities%20in%20the%20Heisenberg%20group&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Palatucci,%20Giampiero&rft.date=2022-10-01&rft.volume=61&rft.issue=5&rft.artnum=185&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02301-9&rft_dat=%3Cproquest_cross%3E2695011237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695011237&rft_id=info:pmid/&rfr_iscdi=true |