Nonlocal Harnack inequalities in the Heisenberg group

We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 185
Hauptverfasser: Palatucci, Giampiero, Piccinini, Mirco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 61
creator Palatucci, Giampiero
Piccinini, Mirco
description We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is p = 2 , we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent s goes to 1.
doi_str_mv 10.1007/s00526-022-02301-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695011237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695011237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZpGmToyzqCote9BySOF271rabtAf_vXErePMwDA--93g8xi4RrhGguokAkpc5cJ5OAOb6iC2wEEkqIY_ZAnRR5Lws9Sk7i3EHgFLxYsHkU9-1vbdttrahs_4jazraT7ZtxoZiEtn4Ttmamkido7DNtqGfhnN2Uts20sXvX7LX-7uX1TrfPD88rm43uRelGHOPQMoJ6UQqpoQuLCIpr6muhCtr520lpVPSey8tQuWdhxpra990VViFYsmu5twh9PuJ4mh2_ZRqttHwUktA5KJKFJ8pH_oYA9VmCM2nDV8GwfzMY-Z5TGphDvMYnUxiNsUEd1sKf9H_uL4BmqxnUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695011237</pqid></control><display><type>article</type><title>Nonlocal Harnack inequalities in the Heisenberg group</title><source>SpringerNature Journals</source><creator>Palatucci, Giampiero ; Piccinini, Mirco</creator><creatorcontrib>Palatucci, Giampiero ; Piccinini, Mirco</creatorcontrib><description>We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is p = 2 , we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent s goes to 1.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02301-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Euclidean geometry ; Ferromagnetism ; Inequalities ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Phase transitions ; Quantum mechanics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 185</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</citedby><cites>FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</cites><orcidid>0000-0002-3706-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02301-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02301-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Palatucci, Giampiero</creatorcontrib><creatorcontrib>Piccinini, Mirco</creatorcontrib><title>Nonlocal Harnack inequalities in the Heisenberg group</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is p = 2 , we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent s goes to 1.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Euclidean geometry</subject><subject>Ferromagnetism</subject><subject>Inequalities</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Phase transitions</subject><subject>Quantum mechanics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9WZpGmToyzqCote9BySOF271rabtAf_vXErePMwDA--93g8xi4RrhGguokAkpc5cJ5OAOb6iC2wEEkqIY_ZAnRR5Lws9Sk7i3EHgFLxYsHkU9-1vbdttrahs_4jazraT7ZtxoZiEtn4Ttmamkido7DNtqGfhnN2Uts20sXvX7LX-7uX1TrfPD88rm43uRelGHOPQMoJ6UQqpoQuLCIpr6muhCtr520lpVPSey8tQuWdhxpra990VViFYsmu5twh9PuJ4mh2_ZRqttHwUktA5KJKFJ8pH_oYA9VmCM2nDV8GwfzMY-Z5TGphDvMYnUxiNsUEd1sKf9H_uL4BmqxnUg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Palatucci, Giampiero</creator><creator>Piccinini, Mirco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3706-9349</orcidid></search><sort><creationdate>20221001</creationdate><title>Nonlocal Harnack inequalities in the Heisenberg group</title><author>Palatucci, Giampiero ; Piccinini, Mirco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c10e8b35b30228394a11e8c9ef73b6fbca755b85ccc5a107cbc0f1faad974a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Euclidean geometry</topic><topic>Ferromagnetism</topic><topic>Inequalities</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Phase transitions</topic><topic>Quantum mechanics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palatucci, Giampiero</creatorcontrib><creatorcontrib>Piccinini, Mirco</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palatucci, Giampiero</au><au>Piccinini, Mirco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal Harnack inequalities in the Heisenberg group</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>61</volume><issue>5</issue><artnum>185</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is p = 2 , we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent s goes to 1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02301-9</doi><orcidid>https://orcid.org/0000-0002-3706-9349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 185
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2695011237
source SpringerNature Journals
subjects Analysis
Asymptotic properties
Calculus of Variations and Optimal Control
Optimization
Control
Dirichlet problem
Euclidean geometry
Ferromagnetism
Inequalities
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Phase transitions
Quantum mechanics
Systems Theory
Theoretical
title Nonlocal Harnack inequalities in the Heisenberg group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20Harnack%20inequalities%20in%20the%20Heisenberg%20group&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Palatucci,%20Giampiero&rft.date=2022-10-01&rft.volume=61&rft.issue=5&rft.artnum=185&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02301-9&rft_dat=%3Cproquest_cross%3E2695011237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695011237&rft_id=info:pmid/&rfr_iscdi=true