Nonlocal Harnack inequalities in the Heisenberg group
We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase trans...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group
H
n
, whose prototype is the Dirichlet problem for the
p
-fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is
p
=
2
, we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent
s
goes to 1. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02301-9 |