Nonlocal Harnack inequalities in the Heisenberg group

We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 185
Hauptverfasser: Palatucci, Giampiero, Piccinini, Mirco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with a wide class of nonlinear integro-differential problems in the Heisenberg-Weyl group  H n , whose prototype is the Dirichlet problem for the p -fractional subLaplace equation. These problems arise in many different contexts in quantum mechanics, in ferromagnetic analysis, in phase transition problems, in image segmentations models, and so on, when non-Euclidean geometry frameworks and nonlocal long-range interactions do naturally occur. We prove general Harnack inequalities for the related weak solutions. Also, in the case when the growth exponent is p = 2 , we investigate the asymptotic behavior of the fractional subLaplacian operator, and the robustness of the aforementioned Harnack estimates as the differentiability exponent s goes to 1.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-022-02301-9