A note on Neumann problems on graphs
We discuss Neumann problems for self-adjoint Laplacians on (possibly infinite) graphs. Under the assumption that the heat semigroup is ultracontractive we discuss the unique solvability for non-empty subgraphs with respect to the vertex boundary and provide analytic and probabilistic representations...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-09, Vol.26 (4), Article 68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss Neumann problems for self-adjoint Laplacians on (possibly infinite) graphs. Under the assumption that the heat semigroup is ultracontractive we discuss the unique solvability for non-empty subgraphs with respect to the vertex boundary and provide analytic and probabilistic representations for Neumann solutions. A second result deals with Neumann problems on canonically compactifiable graphs with respect to the Royden boundary and provides conditions for unique solvability and analytic and probabilistic representations. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-022-00930-0 |