Simplified Risk-Targeted Performance-Based Seismic Design Method for Ordinary Standard Bridges

Abstract This paper presents the formulation of a comprehensive risk-targeted performance-based seismic design (PBSD) framework involving the seismic design of bridge piers for California Ordinary Standard Bridges (OSBs), facilitating risk-informed design and decision making in the face of uncertain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bridge engineering 2022-10, Vol.27 (10)
Hauptverfasser: Deb, Angshuman, Zha, Alex L., Caamaño-Withall, Zachary A., Conte, Joel P., Restrepo, José I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This paper presents the formulation of a comprehensive risk-targeted performance-based seismic design (PBSD) framework involving the seismic design of bridge piers for California Ordinary Standard Bridges (OSBs), facilitating risk-informed design and decision making in the face of uncertainty. A full-fledged implementation of this all-inclusive design method formulated by retaining the inherent rigor of the underlying seismic performance assessment methodology might impose a seemingly prohibitive computational cost for the available resources in the current scenario of seismic bridge design practice. For reasons of practicability, the findings of the full-fledged design framework are inventively utilized to distill out a simplified and computationally more economical PBSD procedure. Its efficacy is validated using four already-built California testbed OSBs as cases in point. The proposed simplified design methodology is able to (1) find a design point in the primary design parameter space of a bridge to be designed for multiple risk-targeted performance objectives; and (2) delineate an approximate, yet sufficiently accurate, feasible design domain and identify the limit states controlling its boundary in the primary design parameter space of the bridge, at a computational cost significantly lower than that of the original method.
ISSN:1084-0702
1943-5592
DOI:10.1061/(ASCE)BE.1943-5592.0001916