Cornish-Fisher Expansions for Functionals of the Weighted Partial Sum Empirical Distribution
Given a random sample X 1 ,…, X n in ℝ p from some distribution F and real weights w 1, n ,…, w n , n adding to n , define the weighted partial sum empirical distribution as G n ( x , t ) = n − 1 ∑ i = 1 [ n t ] w i , n I X i ≤ x for x in ℝ p , 0 ≤ t ≤ 1. We give Cornish-Fisher expansions for smooth...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2022-09, Vol.24 (3), p.1791-1804 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a random sample
X
1
,…,
X
n
in
ℝ
p
from some distribution
F
and real weights
w
1,
n
,…,
w
n
,
n
adding to
n
, define
the weighted partial sum empirical distribution
as
G
n
(
x
,
t
)
=
n
−
1
∑
i
=
1
[
n
t
]
w
i
,
n
I
X
i
≤
x
for
x
in
ℝ
p
, 0 ≤
t
≤ 1. We give Cornish-Fisher expansions for smooth functionals of
G
n
, following up on Withers and Nadarajah (Statistical Methodology 12:1–15,
2013
) who gave expansions for the unweighted version. Applications to sequential analysis include weighted cusum-type functionals for monitoring variance, and a Studentized weighted cusum-type functional for monitoring the mean. |
---|---|
ISSN: | 1387-5841 1573-7713 |
DOI: | 10.1007/s11009-021-09894-2 |