Cornish-Fisher Expansions for Functionals of the Weighted Partial Sum Empirical Distribution

Given a random sample X 1 ,…, X n in ℝ p from some distribution F and real weights w 1, n ,…, w n , n adding to n , define the weighted partial sum empirical distribution as G n ( x , t ) = n − 1 ∑ i = 1 [ n t ] w i , n I X i ≤ x for x in ℝ p , 0 ≤ t ≤ 1. We give Cornish-Fisher expansions for smooth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2022-09, Vol.24 (3), p.1791-1804
Hauptverfasser: Withers, Christopher S., Nadarajah, Saralees
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a random sample X 1 ,…, X n in ℝ p from some distribution F and real weights w 1, n ,…, w n , n adding to n , define the weighted partial sum empirical distribution as G n ( x , t ) = n − 1 ∑ i = 1 [ n t ] w i , n I X i ≤ x for x in ℝ p , 0 ≤ t ≤ 1. We give Cornish-Fisher expansions for smooth functionals of G n , following up on Withers and Nadarajah (Statistical Methodology 12:1–15, 2013 ) who gave expansions for the unweighted version. Applications to sequential analysis include weighted cusum-type functionals for monitoring variance, and a Studentized weighted cusum-type functional for monitoring the mean.
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-021-09894-2