Development of a Multiobjective Automatic Parameter-Calibration Framework for Urban Drainage Systems

Urban drainage systems (UDSs) continue to face challenges, despite numerous efforts to improve their sustainability through design, planning, and management. The goal of such initiatives is to avoid and minimize flooding as well as maintain the UDS’s sustainable functionality, which can be analyzed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-07, Vol.14 (14), p.8350
Hauptverfasser: Kim, Seon Woo, Kwon, Soon Ho, Jung, Donghwi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban drainage systems (UDSs) continue to face challenges, despite numerous efforts to improve their sustainability through design, planning, and management. The goal of such initiatives is to avoid and minimize flooding as well as maintain the UDS’s sustainable functionality, which can be analyzed using a stormwater management model (SWMM). In this study, a multiobjective automatic parameter-calibration (MAPC) framework was developed based on the SWMM. It consisted of three steps: sensitivity analysis (Step I), objective selection (Step II), and SWMM parameter calibration (Step III). The proposed MAPC framework was verified using the Yongdap drainage network located in Seoul, South Korea. The resultant MAPC framework demonstrated that the system characteristics (such as percent of impervious area and hillslope) and problems in UDS design, planning, and management can be well reflected by the corresponding model. The MAPC framework proposed in this study can contribute to UDS modeling sustainability.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14148350