Hybrid Beamforming for MISO System via Convolutional Neural Network

Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-07, Vol.11 (14), p.2213
Hauptverfasser: Zhang, Teng, Dong, Anming, Zhang, Chuanting, Yu, Jiguo, Qiu, Jing, Li, Sufang, Zhou, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 2213
container_title Electronics (Basel)
container_volume 11
creator Zhang, Teng
Dong, Anming
Zhang, Chuanting
Yu, Jiguo
Qiu, Jing
Li, Sufang
Zhou, You
description Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.
doi_str_mv 10.3390/electronics11142213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693981479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693981479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</originalsourceid><addsrcrecordid>eNptkLFOwzAYhC0EElXpE7BYYg7Y_pM4HiECWqnQoTBbrmsjlyQutlOUtydQBgZu-W44nU6H0CUl1wCC3JjG6BR853SklOaMUThBE0a4yAQT7PSPP0ezGHdklKBQAZmgej5sgtviO6Na60Prujc8Ej8t1iu8HmIyLT44hWvfHXzTJ-c71eBn04cfpE8f3i_QmVVNNLNfTtHrw_1LPc-Wq8dFfbvMNDCWMi5sblVZbhXjFbclMZuCVUxro4nOORVUGw7WFkqVuhAAnFsFtMgJ21SWcpiiq2PvPviP3sQkd74P454oWSlAVDTnYkzBMaWDjzEYK_fBtSoMkhL5fZj85zD4AhMBYMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693981479</pqid></control><display><type>article</type><title>Hybrid Beamforming for MISO System via Convolutional Neural Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zhang, Teng ; Dong, Anming ; Zhang, Chuanting ; Yu, Jiguo ; Qiu, Jing ; Li, Sufang ; Zhou, You</creator><creatorcontrib>Zhang, Teng ; Dong, Anming ; Zhang, Chuanting ; Yu, Jiguo ; Qiu, Jing ; Li, Sufang ; Zhou, You</creatorcontrib><description>Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11142213</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Antennas ; Artificial neural networks ; Beamforming ; Communications systems ; Complexity ; Design ; Feature extraction ; Hybrid systems ; MIMO communication ; MISO (control systems) ; Neural networks ; Optimization ; Performance evaluation ; Wireless communications</subject><ispartof>Electronics (Basel), 2022-07, Vol.11 (14), p.2213</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</citedby><cites>FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</cites><orcidid>0000-0002-6685-4071 ; 0000-0001-7470-5159 ; 0000-0001-6451-1158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Dong, Anming</creatorcontrib><creatorcontrib>Zhang, Chuanting</creatorcontrib><creatorcontrib>Yu, Jiguo</creatorcontrib><creatorcontrib>Qiu, Jing</creatorcontrib><creatorcontrib>Li, Sufang</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><title>Hybrid Beamforming for MISO System via Convolutional Neural Network</title><title>Electronics (Basel)</title><description>Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Artificial neural networks</subject><subject>Beamforming</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Design</subject><subject>Feature extraction</subject><subject>Hybrid systems</subject><subject>MIMO communication</subject><subject>MISO (control systems)</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Wireless communications</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkLFOwzAYhC0EElXpE7BYYg7Y_pM4HiECWqnQoTBbrmsjlyQutlOUtydQBgZu-W44nU6H0CUl1wCC3JjG6BR853SklOaMUThBE0a4yAQT7PSPP0ezGHdklKBQAZmgej5sgtviO6Na60Prujc8Ej8t1iu8HmIyLT44hWvfHXzTJ-c71eBn04cfpE8f3i_QmVVNNLNfTtHrw_1LPc-Wq8dFfbvMNDCWMi5sblVZbhXjFbclMZuCVUxro4nOORVUGw7WFkqVuhAAnFsFtMgJ21SWcpiiq2PvPviP3sQkd74P454oWSlAVDTnYkzBMaWDjzEYK_fBtSoMkhL5fZj85zD4AhMBYMw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhang, Teng</creator><creator>Dong, Anming</creator><creator>Zhang, Chuanting</creator><creator>Yu, Jiguo</creator><creator>Qiu, Jing</creator><creator>Li, Sufang</creator><creator>Zhou, You</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6685-4071</orcidid><orcidid>https://orcid.org/0000-0001-7470-5159</orcidid><orcidid>https://orcid.org/0000-0001-6451-1158</orcidid></search><sort><creationdate>20220701</creationdate><title>Hybrid Beamforming for MISO System via Convolutional Neural Network</title><author>Zhang, Teng ; Dong, Anming ; Zhang, Chuanting ; Yu, Jiguo ; Qiu, Jing ; Li, Sufang ; Zhou, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Artificial neural networks</topic><topic>Beamforming</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Design</topic><topic>Feature extraction</topic><topic>Hybrid systems</topic><topic>MIMO communication</topic><topic>MISO (control systems)</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Dong, Anming</creatorcontrib><creatorcontrib>Zhang, Chuanting</creatorcontrib><creatorcontrib>Yu, Jiguo</creatorcontrib><creatorcontrib>Qiu, Jing</creatorcontrib><creatorcontrib>Li, Sufang</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Teng</au><au>Dong, Anming</au><au>Zhang, Chuanting</au><au>Yu, Jiguo</au><au>Qiu, Jing</au><au>Li, Sufang</au><au>Zhou, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Beamforming for MISO System via Convolutional Neural Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>11</volume><issue>14</issue><spage>2213</spage><pages>2213-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11142213</doi><orcidid>https://orcid.org/0000-0002-6685-4071</orcidid><orcidid>https://orcid.org/0000-0001-7470-5159</orcidid><orcidid>https://orcid.org/0000-0001-6451-1158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-07, Vol.11 (14), p.2213
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2693981479
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Antennas
Artificial neural networks
Beamforming
Communications systems
Complexity
Design
Feature extraction
Hybrid systems
MIMO communication
MISO (control systems)
Neural networks
Optimization
Performance evaluation
Wireless communications
title Hybrid Beamforming for MISO System via Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Beamforming%20for%20MISO%20System%20via%20Convolutional%20Neural%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20Teng&rft.date=2022-07-01&rft.volume=11&rft.issue=14&rft.spage=2213&rft.pages=2213-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11142213&rft_dat=%3Cproquest_cross%3E2693981479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693981479&rft_id=info:pmid/&rfr_iscdi=true