Hybrid Beamforming for MISO System via Convolutional Neural Network
Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral e...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-07, Vol.11 (14), p.2213 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 2213 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Zhang, Teng Dong, Anming Zhang, Chuanting Yu, Jiguo Qiu, Jing Li, Sufang Zhou, You |
description | Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms. |
doi_str_mv | 10.3390/electronics11142213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693981479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693981479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</originalsourceid><addsrcrecordid>eNptkLFOwzAYhC0EElXpE7BYYg7Y_pM4HiECWqnQoTBbrmsjlyQutlOUtydQBgZu-W44nU6H0CUl1wCC3JjG6BR853SklOaMUThBE0a4yAQT7PSPP0ezGHdklKBQAZmgej5sgtviO6Na60Prujc8Ej8t1iu8HmIyLT44hWvfHXzTJ-c71eBn04cfpE8f3i_QmVVNNLNfTtHrw_1LPc-Wq8dFfbvMNDCWMi5sblVZbhXjFbclMZuCVUxro4nOORVUGw7WFkqVuhAAnFsFtMgJ21SWcpiiq2PvPviP3sQkd74P454oWSlAVDTnYkzBMaWDjzEYK_fBtSoMkhL5fZj85zD4AhMBYMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693981479</pqid></control><display><type>article</type><title>Hybrid Beamforming for MISO System via Convolutional Neural Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zhang, Teng ; Dong, Anming ; Zhang, Chuanting ; Yu, Jiguo ; Qiu, Jing ; Li, Sufang ; Zhou, You</creator><creatorcontrib>Zhang, Teng ; Dong, Anming ; Zhang, Chuanting ; Yu, Jiguo ; Qiu, Jing ; Li, Sufang ; Zhou, You</creatorcontrib><description>Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11142213</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Antennas ; Artificial neural networks ; Beamforming ; Communications systems ; Complexity ; Design ; Feature extraction ; Hybrid systems ; MIMO communication ; MISO (control systems) ; Neural networks ; Optimization ; Performance evaluation ; Wireless communications</subject><ispartof>Electronics (Basel), 2022-07, Vol.11 (14), p.2213</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</citedby><cites>FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</cites><orcidid>0000-0002-6685-4071 ; 0000-0001-7470-5159 ; 0000-0001-6451-1158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Dong, Anming</creatorcontrib><creatorcontrib>Zhang, Chuanting</creatorcontrib><creatorcontrib>Yu, Jiguo</creatorcontrib><creatorcontrib>Qiu, Jing</creatorcontrib><creatorcontrib>Li, Sufang</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><title>Hybrid Beamforming for MISO System via Convolutional Neural Network</title><title>Electronics (Basel)</title><description>Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Artificial neural networks</subject><subject>Beamforming</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Design</subject><subject>Feature extraction</subject><subject>Hybrid systems</subject><subject>MIMO communication</subject><subject>MISO (control systems)</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Wireless communications</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkLFOwzAYhC0EElXpE7BYYg7Y_pM4HiECWqnQoTBbrmsjlyQutlOUtydQBgZu-W44nU6H0CUl1wCC3JjG6BR853SklOaMUThBE0a4yAQT7PSPP0ezGHdklKBQAZmgej5sgtviO6Na60Prujc8Ej8t1iu8HmIyLT44hWvfHXzTJ-c71eBn04cfpE8f3i_QmVVNNLNfTtHrw_1LPc-Wq8dFfbvMNDCWMi5sblVZbhXjFbclMZuCVUxro4nOORVUGw7WFkqVuhAAnFsFtMgJ21SWcpiiq2PvPviP3sQkd74P454oWSlAVDTnYkzBMaWDjzEYK_fBtSoMkhL5fZj85zD4AhMBYMw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhang, Teng</creator><creator>Dong, Anming</creator><creator>Zhang, Chuanting</creator><creator>Yu, Jiguo</creator><creator>Qiu, Jing</creator><creator>Li, Sufang</creator><creator>Zhou, You</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6685-4071</orcidid><orcidid>https://orcid.org/0000-0001-7470-5159</orcidid><orcidid>https://orcid.org/0000-0001-6451-1158</orcidid></search><sort><creationdate>20220701</creationdate><title>Hybrid Beamforming for MISO System via Convolutional Neural Network</title><author>Zhang, Teng ; Dong, Anming ; Zhang, Chuanting ; Yu, Jiguo ; Qiu, Jing ; Li, Sufang ; Zhou, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-79f4fa66da2787f60eb5282ccec0c47191ce73ff5aa6c593377fa315402b8f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Artificial neural networks</topic><topic>Beamforming</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Design</topic><topic>Feature extraction</topic><topic>Hybrid systems</topic><topic>MIMO communication</topic><topic>MISO (control systems)</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Dong, Anming</creatorcontrib><creatorcontrib>Zhang, Chuanting</creatorcontrib><creatorcontrib>Yu, Jiguo</creatorcontrib><creatorcontrib>Qiu, Jing</creatorcontrib><creatorcontrib>Li, Sufang</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Teng</au><au>Dong, Anming</au><au>Zhang, Chuanting</au><au>Yu, Jiguo</au><au>Qiu, Jing</au><au>Li, Sufang</au><au>Zhou, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Beamforming for MISO System via Convolutional Neural Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>11</volume><issue>14</issue><spage>2213</spage><pages>2213-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Hybrid beamforming (HBF) is a promising approach to obtain a better balance between hardware complexity and system performance in massive MIMO communication systems. However, the HBF optimization problem is a challenging task due to its nonconvex property in terms of design complexity and spectral efficiency (SE) performance. In this work, a low-complexity convolutional neural network (CNN)-based HBF algorithm is proposed to solve the SE maximization problem under the constant modulus constraint and transmit power constraint in a multiple-input single-output (MISO) system. The proposed CNN framework uses multiple convolutional blocks to extract more channel features. Considering that the solutions for the HBF are hard to obtain, we derive an unsupervised learning mechanism to avoid any labeled data when training the constructed CNN. We discuss the performance of the proposed algorithm in terms of both the generalization ability for multiple CSIs and the specific solving ability for an individual CSI, respectively. Simulations show its advantages in both SE and complexity over other related algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11142213</doi><orcidid>https://orcid.org/0000-0002-6685-4071</orcidid><orcidid>https://orcid.org/0000-0001-7470-5159</orcidid><orcidid>https://orcid.org/0000-0001-6451-1158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-07, Vol.11 (14), p.2213 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2693981479 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Antennas Artificial neural networks Beamforming Communications systems Complexity Design Feature extraction Hybrid systems MIMO communication MISO (control systems) Neural networks Optimization Performance evaluation Wireless communications |
title | Hybrid Beamforming for MISO System via Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Beamforming%20for%20MISO%20System%20via%20Convolutional%20Neural%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20Teng&rft.date=2022-07-01&rft.volume=11&rft.issue=14&rft.spage=2213&rft.pages=2213-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11142213&rft_dat=%3Cproquest_cross%3E2693981479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693981479&rft_id=info:pmid/&rfr_iscdi=true |