Simulations of plasticity in diamond nanoparticles showing ultrahigh strength
We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent cr...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2022-06, Vol.126, p.109109, Article 109109 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109109 |
container_title | Diamond and related materials |
container_volume | 126 |
creator | Garcia Vidable, G. Gonzalez, R.I. Valencia, F.J. Amigo, N. Tramontina, D. Bringa, E.M. |
description | We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength.
[Display omitted]
•Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2){111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond. |
doi_str_mv | 10.1016/j.diamond.2022.109109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693931426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963522002916</els_id><sourcerecordid>2693931426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EIeBzZ-5Nmy5PIuIXTHxQn0PWpmtKl9QkVfbv7djehQsX7vm4nEPINbAFMBC33aK2eutdvUCGON3kNCdkBstSZowJPCUzJrHIpODFObmIsWMMUOYwI28fdjv2OlnvIvUNHXodk61s2lHr6NGXOu38oMME9CbS2Ppf6zZ07FPQrd20NKZg3Ca1l-Ss0X00V8c9J19Pj58PL9nq_fn14X6VVZyXKWsMcFbma6yXADLXwJHJGrRoZIOCiZJrhkUBpVzLyqxLkGKJYsJFjjUg8jm5OfgOwX-PJibV-TG46aVCIbnkkKOYWMWBVQUfYzCNGoLd6rBTwNS-OdWpY0K1b04dmpt0dwedmSL8WBNUrKxxlaltMFVStbf_OPwBRmp5BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693931426</pqid></control><display><type>article</type><title>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Garcia Vidable, G. ; Gonzalez, R.I. ; Valencia, F.J. ; Amigo, N. ; Tramontina, D. ; Bringa, E.M.</creator><creatorcontrib>Garcia Vidable, G. ; Gonzalez, R.I. ; Valencia, F.J. ; Amigo, N. ; Tramontina, D. ; Bringa, E.M.</creatorcontrib><description>We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength.
[Display omitted]
•Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2)<1 10>{111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2022.109109</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphization ; Contact pressure ; Crystals ; Diamond ; Diamond machining ; Diamonds ; Dislocation density ; Dislocations ; Elastic deformation ; Elastic limit ; Hardness ; Identification methods ; Indentation ; Machine learning ; Modulus of elasticity ; Molecular dynamics ; Nanoparticles ; Plastic deformation ; Plasticity ; Poisson's ratio ; Single crystals ; Volumetric strain ; Yield stress</subject><ispartof>Diamond and related materials, 2022-06, Vol.126, p.109109, Article 109109</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</citedby><cites>FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963522002916$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Garcia Vidable, G.</creatorcontrib><creatorcontrib>Gonzalez, R.I.</creatorcontrib><creatorcontrib>Valencia, F.J.</creatorcontrib><creatorcontrib>Amigo, N.</creatorcontrib><creatorcontrib>Tramontina, D.</creatorcontrib><creatorcontrib>Bringa, E.M.</creatorcontrib><title>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</title><title>Diamond and related materials</title><description>We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength.
[Display omitted]
•Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2)<1 10>{111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.</description><subject>Amorphization</subject><subject>Contact pressure</subject><subject>Crystals</subject><subject>Diamond</subject><subject>Diamond machining</subject><subject>Diamonds</subject><subject>Dislocation density</subject><subject>Dislocations</subject><subject>Elastic deformation</subject><subject>Elastic limit</subject><subject>Hardness</subject><subject>Identification methods</subject><subject>Indentation</subject><subject>Machine learning</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Plastic deformation</subject><subject>Plasticity</subject><subject>Poisson's ratio</subject><subject>Single crystals</subject><subject>Volumetric strain</subject><subject>Yield stress</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4EIeBzZ-5Nmy5PIuIXTHxQn0PWpmtKl9QkVfbv7djehQsX7vm4nEPINbAFMBC33aK2eutdvUCGON3kNCdkBstSZowJPCUzJrHIpODFObmIsWMMUOYwI28fdjv2OlnvIvUNHXodk61s2lHr6NGXOu38oMME9CbS2Ppf6zZ07FPQrd20NKZg3Ca1l-Ss0X00V8c9J19Pj58PL9nq_fn14X6VVZyXKWsMcFbma6yXADLXwJHJGrRoZIOCiZJrhkUBpVzLyqxLkGKJYsJFjjUg8jm5OfgOwX-PJibV-TG46aVCIbnkkKOYWMWBVQUfYzCNGoLd6rBTwNS-OdWpY0K1b04dmpt0dwedmSL8WBNUrKxxlaltMFVStbf_OPwBRmp5BQ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Garcia Vidable, G.</creator><creator>Gonzalez, R.I.</creator><creator>Valencia, F.J.</creator><creator>Amigo, N.</creator><creator>Tramontina, D.</creator><creator>Bringa, E.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202206</creationdate><title>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</title><author>Garcia Vidable, G. ; Gonzalez, R.I. ; Valencia, F.J. ; Amigo, N. ; Tramontina, D. ; Bringa, E.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphization</topic><topic>Contact pressure</topic><topic>Crystals</topic><topic>Diamond</topic><topic>Diamond machining</topic><topic>Diamonds</topic><topic>Dislocation density</topic><topic>Dislocations</topic><topic>Elastic deformation</topic><topic>Elastic limit</topic><topic>Hardness</topic><topic>Identification methods</topic><topic>Indentation</topic><topic>Machine learning</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Plastic deformation</topic><topic>Plasticity</topic><topic>Poisson's ratio</topic><topic>Single crystals</topic><topic>Volumetric strain</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia Vidable, G.</creatorcontrib><creatorcontrib>Gonzalez, R.I.</creatorcontrib><creatorcontrib>Valencia, F.J.</creatorcontrib><creatorcontrib>Amigo, N.</creatorcontrib><creatorcontrib>Tramontina, D.</creatorcontrib><creatorcontrib>Bringa, E.M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia Vidable, G.</au><au>Gonzalez, R.I.</au><au>Valencia, F.J.</au><au>Amigo, N.</au><au>Tramontina, D.</au><au>Bringa, E.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</atitle><jtitle>Diamond and related materials</jtitle><date>2022-06</date><risdate>2022</risdate><volume>126</volume><spage>109109</spage><pages>109109-</pages><artnum>109109</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength.
[Display omitted]
•Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2)<1 10>{111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2022.109109</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2022-06, Vol.126, p.109109, Article 109109 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_journals_2693931426 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Amorphization Contact pressure Crystals Diamond Diamond machining Diamonds Dislocation density Dislocations Elastic deformation Elastic limit Hardness Identification methods Indentation Machine learning Modulus of elasticity Molecular dynamics Nanoparticles Plastic deformation Plasticity Poisson's ratio Single crystals Volumetric strain Yield stress |
title | Simulations of plasticity in diamond nanoparticles showing ultrahigh strength |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20plasticity%20in%20diamond%20nanoparticles%20showing%20ultrahigh%20strength&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Garcia%20Vidable,%20G.&rft.date=2022-06&rft.volume=126&rft.spage=109109&rft.pages=109109-&rft.artnum=109109&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2022.109109&rft_dat=%3Cproquest_cross%3E2693931426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693931426&rft_id=info:pmid/&rft_els_id=S0925963522002916&rfr_iscdi=true |