Simulations of plasticity in diamond nanoparticles showing ultrahigh strength

We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2022-06, Vol.126, p.109109, Article 109109
Hauptverfasser: Garcia Vidable, G., Gonzalez, R.I., Valencia, F.J., Amigo, N., Tramontina, D., Bringa, E.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109109
container_title Diamond and related materials
container_volume 126
creator Garcia Vidable, G.
Gonzalez, R.I.
Valencia, F.J.
Amigo, N.
Tramontina, D.
Bringa, E.M.
description We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength. [Display omitted] •Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2){111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.
doi_str_mv 10.1016/j.diamond.2022.109109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693931426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963522002916</els_id><sourcerecordid>2693931426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4EIeBzZ-5Nmy5PIuIXTHxQn0PWpmtKl9QkVfbv7djehQsX7vm4nEPINbAFMBC33aK2eutdvUCGON3kNCdkBstSZowJPCUzJrHIpODFObmIsWMMUOYwI28fdjv2OlnvIvUNHXodk61s2lHr6NGXOu38oMME9CbS2Ppf6zZ07FPQrd20NKZg3Ca1l-Ss0X00V8c9J19Pj58PL9nq_fn14X6VVZyXKWsMcFbma6yXADLXwJHJGrRoZIOCiZJrhkUBpVzLyqxLkGKJYsJFjjUg8jm5OfgOwX-PJibV-TG46aVCIbnkkKOYWMWBVQUfYzCNGoLd6rBTwNS-OdWpY0K1b04dmpt0dwedmSL8WBNUrKxxlaltMFVStbf_OPwBRmp5BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693931426</pqid></control><display><type>article</type><title>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Garcia Vidable, G. ; Gonzalez, R.I. ; Valencia, F.J. ; Amigo, N. ; Tramontina, D. ; Bringa, E.M.</creator><creatorcontrib>Garcia Vidable, G. ; Gonzalez, R.I. ; Valencia, F.J. ; Amigo, N. ; Tramontina, D. ; Bringa, E.M.</creatorcontrib><description>We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength. [Display omitted] •Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2)&lt;1 10&gt;{111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2022.109109</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphization ; Contact pressure ; Crystals ; Diamond ; Diamond machining ; Diamonds ; Dislocation density ; Dislocations ; Elastic deformation ; Elastic limit ; Hardness ; Identification methods ; Indentation ; Machine learning ; Modulus of elasticity ; Molecular dynamics ; Nanoparticles ; Plastic deformation ; Plasticity ; Poisson's ratio ; Single crystals ; Volumetric strain ; Yield stress</subject><ispartof>Diamond and related materials, 2022-06, Vol.126, p.109109, Article 109109</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</citedby><cites>FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963522002916$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Garcia Vidable, G.</creatorcontrib><creatorcontrib>Gonzalez, R.I.</creatorcontrib><creatorcontrib>Valencia, F.J.</creatorcontrib><creatorcontrib>Amigo, N.</creatorcontrib><creatorcontrib>Tramontina, D.</creatorcontrib><creatorcontrib>Bringa, E.M.</creatorcontrib><title>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</title><title>Diamond and related materials</title><description>We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength. [Display omitted] •Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2)&lt;1 10&gt;{111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.</description><subject>Amorphization</subject><subject>Contact pressure</subject><subject>Crystals</subject><subject>Diamond</subject><subject>Diamond machining</subject><subject>Diamonds</subject><subject>Dislocation density</subject><subject>Dislocations</subject><subject>Elastic deformation</subject><subject>Elastic limit</subject><subject>Hardness</subject><subject>Identification methods</subject><subject>Indentation</subject><subject>Machine learning</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Plastic deformation</subject><subject>Plasticity</subject><subject>Poisson's ratio</subject><subject>Single crystals</subject><subject>Volumetric strain</subject><subject>Yield stress</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4EIeBzZ-5Nmy5PIuIXTHxQn0PWpmtKl9QkVfbv7djehQsX7vm4nEPINbAFMBC33aK2eutdvUCGON3kNCdkBstSZowJPCUzJrHIpODFObmIsWMMUOYwI28fdjv2OlnvIvUNHXodk61s2lHr6NGXOu38oMME9CbS2Ppf6zZ07FPQrd20NKZg3Ca1l-Ss0X00V8c9J19Pj58PL9nq_fn14X6VVZyXKWsMcFbma6yXADLXwJHJGrRoZIOCiZJrhkUBpVzLyqxLkGKJYsJFjjUg8jm5OfgOwX-PJibV-TG46aVCIbnkkKOYWMWBVQUfYzCNGoLd6rBTwNS-OdWpY0K1b04dmpt0dwedmSL8WBNUrKxxlaltMFVStbf_OPwBRmp5BQ</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Garcia Vidable, G.</creator><creator>Gonzalez, R.I.</creator><creator>Valencia, F.J.</creator><creator>Amigo, N.</creator><creator>Tramontina, D.</creator><creator>Bringa, E.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202206</creationdate><title>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</title><author>Garcia Vidable, G. ; Gonzalez, R.I. ; Valencia, F.J. ; Amigo, N. ; Tramontina, D. ; Bringa, E.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-fe13074b2d81194a13209d1a6f9f260673a0255179b9ceb71968261a6642d1223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphization</topic><topic>Contact pressure</topic><topic>Crystals</topic><topic>Diamond</topic><topic>Diamond machining</topic><topic>Diamonds</topic><topic>Dislocation density</topic><topic>Dislocations</topic><topic>Elastic deformation</topic><topic>Elastic limit</topic><topic>Hardness</topic><topic>Identification methods</topic><topic>Indentation</topic><topic>Machine learning</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Plastic deformation</topic><topic>Plasticity</topic><topic>Poisson's ratio</topic><topic>Single crystals</topic><topic>Volumetric strain</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia Vidable, G.</creatorcontrib><creatorcontrib>Gonzalez, R.I.</creatorcontrib><creatorcontrib>Valencia, F.J.</creatorcontrib><creatorcontrib>Amigo, N.</creatorcontrib><creatorcontrib>Tramontina, D.</creatorcontrib><creatorcontrib>Bringa, E.M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia Vidable, G.</au><au>Gonzalez, R.I.</au><au>Valencia, F.J.</au><au>Amigo, N.</au><au>Tramontina, D.</au><au>Bringa, E.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of plasticity in diamond nanoparticles showing ultrahigh strength</atitle><jtitle>Diamond and related materials</jtitle><date>2022-06</date><risdate>2022</risdate><volume>126</volume><spage>109109</spage><pages>109109-</pages><artnum>109109</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength. [Display omitted] •Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2)&lt;1 10&gt;{111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2022.109109</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2022-06, Vol.126, p.109109, Article 109109
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_journals_2693931426
source Elsevier ScienceDirect Journals Complete
subjects Amorphization
Contact pressure
Crystals
Diamond
Diamond machining
Diamonds
Dislocation density
Dislocations
Elastic deformation
Elastic limit
Hardness
Identification methods
Indentation
Machine learning
Modulus of elasticity
Molecular dynamics
Nanoparticles
Plastic deformation
Plasticity
Poisson's ratio
Single crystals
Volumetric strain
Yield stress
title Simulations of plasticity in diamond nanoparticles showing ultrahigh strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20plasticity%20in%20diamond%20nanoparticles%20showing%20ultrahigh%20strength&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Garcia%20Vidable,%20G.&rft.date=2022-06&rft.volume=126&rft.spage=109109&rft.pages=109109-&rft.artnum=109109&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2022.109109&rft_dat=%3Cproquest_cross%3E2693931426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693931426&rft_id=info:pmid/&rft_els_id=S0925963522002916&rfr_iscdi=true