Simulations of plasticity in diamond nanoparticles showing ultrahigh strength

We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2022-06, Vol.126, p.109109, Article 109109
Hauptverfasser: Garcia Vidable, G., Gonzalez, R.I., Valencia, F.J., Amigo, N., Tramontina, D., Bringa, E.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use molecular dynamics (MD) simulations to deform single crystal spherical carbon nanoparticles (NP), 4–45 nm diameter, with a hard, flat indenter, compressing along the [001] direction. There is no clear amorphization nor phase change in the NP, but there is significant deformation, with bent crystalline planes, and many atoms that retain sp3 coordination, but are no longer recognized as having diamond structure by different structure-identification methods. Machine-learning is used to improve diamond-structure identification. The NP deforms laterally, and volumetric strain is ~0.1 when the uniaxial strain is ~0.5. Poisson's ratio increases with strain, and the elastic limit is reached at 0.2–0.3 strain, at a contact pressure of ~150 GPa. For NPs above 5 nm, dislocations appear and are mostly (1/2) {111} full dislocations, with a few partial dislocations for larger nanoparticles, without twinning. These results agree with the recent observation of plastic deformation in diamond nanopillars. Small NP display elastic modulus, yield stress and hardness increasing with NP size, but NPs with diameter larger than 25 nm display an approximately constant dislocation and dislocation junction density, which leads to a plateau in the hardness versus NP size, at ~150 GPa, close to bulk diamond. Diamond nanoparticles could provide high strength thin coatings, lighter than full-density nanotwinned diamond but with nearly the same strength. [Display omitted] •Indented diamond nanoparticles (NP) show large elastic limits at strains of 0.2‐0.3.•Structure-identification methods including machine-learning discard phase changes.•Dislocations are mostly (1/2){111} full dislocations, screw character.•Elastic modulus and yield strength increase with NP size, then reach a plateau.•NP hardness is ~150 GPa, comparable to bulk diamond.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2022.109109