Swarm Intelligence Algorithms for Optimal Scheduling for Cloud-Based Fuzzy Systems

A fuzzy cloud resource scheduling model with time-cost constraints is built using fuzzy triangular numbers to represent uncertain task execution time. Task scheduling reduces total time and cost spent on a project. It connects virtual machines and functions. Particle swarm optimization (HPO) is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-07, Vol.2022, p.1-11
Hauptverfasser: AlSuwaidan, Lulwah, Khan, Shakir, Almakki, Riyad, Baig, Abdul Rauf, Sarkar, Partha, Ahmed, Alaa E. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fuzzy cloud resource scheduling model with time-cost constraints is built using fuzzy triangular numbers to represent uncertain task execution time. Task scheduling reduces total time and cost spent on a project. It connects virtual machines and functions. Particle swarm optimization (HPO) is used to plan cloud resources (HSOA). The approach uses orthogonal particle swarm initialization to increase the quality of the initial particle exploration, rerandomization to regulate the particle search range, and real-time updating of inertia weights to control particle speed. The suggested problem model and optimization approach are evaluated using random simulation data provided by the CloudSim simulation platform. Less overall execution time and a lower cost are shown to have fast convergence and solution capabilities in experiments.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/4255835