Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well
This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation: { u + V ( x ) u = u log u 2 i n R N , u H 1 ( R N ) , where N ⩾ 1, ⋋ > 0 is a parameter and the nonnegative continuous function V : ℝ N → ℝ has potential well Ω:= int V −1 (0)...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2022-08, Vol.65 (8), p.1577-1598 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation:
{
u
+
V
(
x
)
u
=
u
log
u
2
i
n
R
N
,
u
H
1
(
R
N
)
,
where
N
⩾ 1, ⋋ > 0 is a parameter and the nonnegative continuous function
V
: ℝ
N
→ ℝ has potential well Ω:= int
V
−1
(0) which possesses
k
disjoint bounded components
Ω=
∪
j
=
1
k
Ω
j
. Using the variational methods, we prove that if the parameter ⋋ > 0 is large enough, then the equation has at least 2
k
− 1 multi-bump positive solutions. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-020-1821-9 |