Multiagent Deep Reinforcement Learning-Aided Output Current Sharing Control for Input-Series Output-Parallel Dual Active Bridge Converter

This letter proposes a multiagent soft actor-critic (MASAC) enabled multiagent deep reinforcement learning (MADRL) algorithm for output current sharing of the input-series output-parallel dual active bridge converter. The modular converter is partitioned into different submodules, which are treated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2022-11, Vol.37 (11), p.12955-12961
Hauptverfasser: Zeng, Yu, Pou, Josep, Sun, Changjiang, Maswood, Ali I., Dong, Jiaxin, Mukherjee, Suvajit, Gupta, Amit Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a multiagent soft actor-critic (MASAC) enabled multiagent deep reinforcement learning (MADRL) algorithm for output current sharing of the input-series output-parallel dual active bridge converter. The modular converter is partitioned into different submodules, which are treated as DRL agents of Markov games. Furthermore, all agents are executed decentralized to provide online control decisions after collaborative training. The proposed MASAC algorithm verified in a 150 V/50 V hardware prototype shows optimal dynamic performance.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2022.3181243