Subsurface profiling of a region in Jamshedpur city using active MASW: a case study

This paper deals specifically with the active MASW method, which was applied for subsurface exploration of a region in Jamshedpur city, India, to study the various lithological and stiffness properties of subsurface materials. The study investigates the impact of data acquisition parameters on obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geophysica 2022-08, Vol.70 (4), p.1601-1617
Hauptverfasser: Imam, Ashhad, Sharma, Keshav K., Kumar, Virendra, Singh, Neeraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals specifically with the active MASW method, which was applied for subsurface exploration of a region in Jamshedpur city, India, to study the various lithological and stiffness properties of subsurface materials. The study investigates the impact of data acquisition parameters on obtaining a high-resolution dispersion image, based on the ongoing MASW survey. A linear array of 24 numbers of 4.5 Hz geophones was used to collect raw wavefield traces generated by a 10 kg sledgehammer. Wavefields were regulated using a range of sampling frequencies (500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz), as well as offset distances (1, 2 m, 4 m, 6 m, 8 m, 10 m, and 12 m) and inter receiver spacing (1 m and 2 m). Based on the results, the best data collection parameters for a high signal-to-noise ratio were determined to be: 1000 Hz sampling frequency, 8 m offset distance, and 1 m inter receiver spacing, resulting in a sufficient resolution dispersion image. Moreover, 1D and 2D shear-wave velocity profiles for the chosen site were derived. The stiff silty clay soil (up to a depth of 5 m) and dense to very dense weathered mica schist was found (at variable locations and depths from 8 to 30 m or beyond). The average V s30 is 402 m/s, and the site is classed as Type C as per NEHRP Site Classification. The shear-wave velocity profiles show a high level of agreement with borehole data, demonstrating the effectiveness of the non-invasive technology for sub-surface investigation.
ISSN:1895-7455
1895-6572
1895-7455
DOI:10.1007/s11600-022-00816-5