Two new neolignans and an indole alkaloid from the stems of Nauclea officinalis and their biological activities
A pair of new diastereoisomers neolignans (1–2) and a new alkaloid (7) were isolated from the stems of Nauclea officinalis: naucleaoxyneolignoside A (1), naucleaoxyneolignoside B (2), (2S,3S)-javaniside (7), together with nine known compounds, 2S-3,3-di-(4-hydroxy-3-methoxyphenyl)-propane-1,2-diol (...
Gespeichert in:
Veröffentlicht in: | Fitoterapia 2022-07, Vol.160, p.105228, Article 105228 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A pair of new diastereoisomers neolignans (1–2) and a new alkaloid (7) were isolated from the stems of Nauclea officinalis: naucleaoxyneolignoside A (1), naucleaoxyneolignoside B (2), (2S,3S)-javaniside (7), together with nine known compounds, 2S-3,3-di-(4-hydroxy-3-methoxyphenyl)-propane-1,2-diol (3), threo-1,2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1,3-diol (4), nauclefine (5), angustidine (6), naucleoxoside A (8), naucleoxoside B (9), angustoline (10), (3S,19S)-3,14-dihydroangustoline (11), and (3S,19R)-3,14-dihydroangustoline (12).The structures of 1, 2 and 7 were elucidated by extensive spectroscopic methods and the known compounds were identified by comparison of their data with those reported in the literature. The absolution configurations of 1, 2, 7,11 and 12 were confirmed by the quantum chemical CD calculation method. Compounds 1–9 showed weak to moderate inhibitory activity on nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells in vitro with IC50 values comparable to that of dexamethasone. In addition, compounds 1–9 were evaluated for the antibacterial and cytotoxic effects, and the results revealed that these compounds showed no anti-bacterial activity, and compounds 3–6 showed modest cytotoxic activity.
[Display omitted] |
---|---|
ISSN: | 0367-326X 1873-6971 |
DOI: | 10.1016/j.fitote.2022.105228 |