Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries
Complex phase transitions induced by interlayer slides in layered cathode materials lead to poor cycling stability and rate capability for sodium-ion batteries. Herein, we design and prepare a new six-component high-entropy oxide (HEO) layered cathode O3-Na(Fe 0.2 Co 0.2 Ni 0.2 Ti 0.2 Sn 0.1 Li 0.1...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-07, Vol.1 (28), p.14943-14953 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Complex phase transitions induced by interlayer slides in layered cathode materials lead to poor cycling stability and rate capability for sodium-ion batteries. Herein, we design and prepare a new six-component high-entropy oxide (HEO) layered cathode O3-Na(Fe
0.2
Co
0.2
Ni
0.2
Ti
0.2
Sn
0.1
Li
0.1
)O
2
to enable highly reversible electrochemical reaction and phase-transition behavior. The HEO cathode exhibits good cycling performance (capacity retention of ∼81% after 100 cycles at 0.5C) and outstanding rate capability (capacity of ∼81 mA h g
−1
at 2.0C) due to the higher sodium diffusion coefficient (above 5.75 × 10
−11
cm
2
s
−1
) than most reported O3-type cathodes. Moreover, the high-entropy cathode has superior compatibility with the hard carbon anode and delivers a specific capacity of 90.4 mA h g
−1
(energy density of ∼267.5 W h kg
−1
).
Ex situ
X-ray diffraction proves that the high-entropy designing effectively suppresses the intermediate phase change to achieve reversible O3-P3 phase evolution, and in turn stabilizes the layered structure. X-ray absorption spectroscopy and Mössbauer spectrum of
57
Fe suggest that Ni
2+
/Ni
3.5+
, Co
3+
/Co
3.5+
, and part of Fe
3+
/Fe
3.5+
redox reaction contribute the charge compensation. The enhanced performance can be attributed to the disordered distribution of multi-component transition metals in HEO suppressing the ordering of electric charges and sodium vacancies, thereby inhibiting the interlayer slide and phase transition.
A high-entropy O3-type layered oxide cathode Na(Fe
0.2
Co
0.2
Ni
0.2
Ti
0.2
Sn
0.1
Li
0.1
)O
2
with disordered distribution of multi-component transition metals suppresses the complex intermediate phase transition, enabling highly reversible electrochemical reaction. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d2ta02451a |