Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries

Complex phase transitions induced by interlayer slides in layered cathode materials lead to poor cycling stability and rate capability for sodium-ion batteries. Herein, we design and prepare a new six-component high-entropy oxide (HEO) layered cathode O3-Na(Fe 0.2 Co 0.2 Ni 0.2 Ti 0.2 Sn 0.1 Li 0.1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-07, Vol.1 (28), p.14943-14953
Hauptverfasser: Tian, Kanghui, He, Huan, Li, Xiao, Wang, Dan, Wang, Zhiyuan, Zheng, Runguo, Sun, Hongyu, Liu, Yanguo, Wang, Qinchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex phase transitions induced by interlayer slides in layered cathode materials lead to poor cycling stability and rate capability for sodium-ion batteries. Herein, we design and prepare a new six-component high-entropy oxide (HEO) layered cathode O3-Na(Fe 0.2 Co 0.2 Ni 0.2 Ti 0.2 Sn 0.1 Li 0.1 )O 2 to enable highly reversible electrochemical reaction and phase-transition behavior. The HEO cathode exhibits good cycling performance (capacity retention of ∼81% after 100 cycles at 0.5C) and outstanding rate capability (capacity of ∼81 mA h g −1 at 2.0C) due to the higher sodium diffusion coefficient (above 5.75 × 10 −11 cm 2 s −1 ) than most reported O3-type cathodes. Moreover, the high-entropy cathode has superior compatibility with the hard carbon anode and delivers a specific capacity of 90.4 mA h g −1 (energy density of ∼267.5 W h kg −1 ). Ex situ X-ray diffraction proves that the high-entropy designing effectively suppresses the intermediate phase change to achieve reversible O3-P3 phase evolution, and in turn stabilizes the layered structure. X-ray absorption spectroscopy and Mössbauer spectrum of 57 Fe suggest that Ni 2+ /Ni 3.5+ , Co 3+ /Co 3.5+ , and part of Fe 3+ /Fe 3.5+ redox reaction contribute the charge compensation. The enhanced performance can be attributed to the disordered distribution of multi-component transition metals in HEO suppressing the ordering of electric charges and sodium vacancies, thereby inhibiting the interlayer slide and phase transition. A high-entropy O3-type layered oxide cathode Na(Fe 0.2 Co 0.2 Ni 0.2 Ti 0.2 Sn 0.1 Li 0.1 )O 2 with disordered distribution of multi-component transition metals suppresses the complex intermediate phase transition, enabling highly reversible electrochemical reaction.
ISSN:2050-7488
2050-7496
DOI:10.1039/d2ta02451a