Machine Learning to Generate Adjustable Dose Distributions in Head-and-Neck Cancer Radiation Therapy

In this work, we propose a Machine Learning model that generates an adjustable 3D dose distribution for external beam radiation therapy for head-and-neck cancer treatments. In contrast to existing Machine Learning methods that provide a single model, we create pairs of models for each organ-at-risk,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Hajinezhad, Davood, Oroojlooy, Afshin, Nazari, Mohammadreza, Hunt, Xin, Silva, Jorge, Shen, Colette, Chera, Bhisham, Das, Shiva K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose a Machine Learning model that generates an adjustable 3D dose distribution for external beam radiation therapy for head-and-neck cancer treatments. In contrast to existing Machine Learning methods that provide a single model, we create pairs of models for each organ-at-risk, namely lower-extreme and upper-extreme models. These model pairs for an organ-at-risk propose doses that give lower and higher doses to that organ-at-risk, while also encapsulating the dose trade-off to other organs-at-risk. By weighting and combining the model pairs for all organs-at-risk, we are able to dynamically create adjustable dose distributions that can be used, in real-time, to move doses between organs-at-risk, thereby customizing the dose distribution to the needs of a particular patient. We leverage a key observation that the training data set inherently contains the clinical trade-offs. We show that the adjustable distributions are able to provide reasonable clinical dose latitude in the trade-off of doses between organs-at-risk.
ISSN:2331-8422