Periodic Solar Wind Structures Observed in Measurements of Elemental and Ionic Composition in situ at L1

Mesoscale periodic structures observed in solar wind plasma serve as an important diagnostic tool for constraining the processes that govern the formation of the solar wind. These structures have been observed in situ and in remote data as fluctuations in proton and electron density. However, only t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-07, Vol.933 (2), p.198
Hauptverfasser: Gershkovich, Irena, Lepri, Susan T., Viall, Nicholeen M., Matteo, Simone Di, Kepko, Larry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesoscale periodic structures observed in solar wind plasma serve as an important diagnostic tool for constraining the processes that govern the formation of the solar wind. These structures have been observed in situ and in remote data as fluctuations in proton and electron density. However, only two events of this type have been reported regarding the elemental and ionic composition. Composition measurements are especially important in gaining an understanding of the origin of the solar wind as the composition is frozen into the plasma at the Sun and does not evolve as it advects through the heliosphere. Here, we present the analysis of four events containing mesoscale periodic solar wind structure during which the Iron and Magnesium number density data, measured by the Solar Wind Ion Composition Spectrometer (SWICS)on board the Advanced Composition Explorer spacecraft, are validated at statistically significant count levels. We use a spectral analysis method specifically designed to extract periodic signals from astrophysical time series and apply it to the SWICS 12-minute native resolution dataset. We find variations in the relative abundance of elements with low first ionization potential, mass dependencies, and charge state during time intervals in which mesoscale periodic structures are observed. These variations are linked to temporal or spatial variations in solar source regions and put constraints on the solar wind formation mechanisms that produce them. Techniques presented here are relevant for future, higher-resolution studies of data from new instruments such as Solar Orbiter’s Heavy Ion Sensor.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac73ee