Convergence of thin vibrating rods to a linear beam equation
We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-08, Vol.73 (4), Article 166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 73 |
creator | Abels, Helmut Ameismeier, Tobias |
description | We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam equation. Following this, we derive the existence of appropriately scaled initial data and can bound the difference between the analytical solution and the approximating sequence. |
doi_str_mv | 10.1007/s00033-022-01803-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689682360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689682360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7e7dfc006b18ff2915d9f460dd78b9eff13f2fcd649b835eb867bad242eb31fc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmeYBbqT4goIbXYdkktQpbdIm00L_vaMjuHN1F-c758KH0DWFWwog7yoAcE6AMQJUASfHEzShDQOigetTNAFoGsKYnJ2ji1pXAy4p8Am6n-d0CGUZUhtwjrj_7BI-dK7YvktLXLKvuM_Y4nWXgi3YBbvBYbcf4pwu0Vm06xqufu8UfTw9vs9fyOLt-XX-sCAtF7wnMkgfWwDhqIqRaTrzOjYCvJfK6RAj5ZHF1otGO8VnwSkhnfWsYcFxGls-RTfj7rbk3T7U3qzyvqThpWFCaaEYFzBQbKTakmstIZpt6Ta2HA0F823JjJbMYMn8WDLHocTHUh3gtAzlb_qf1hdh4Gq6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689682360</pqid></control><display><type>article</type><title>Convergence of thin vibrating rods to a linear beam equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abels, Helmut ; Ameismeier, Tobias</creator><creatorcontrib>Abels, Helmut ; Ameismeier, Tobias</creatorcontrib><description>We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam equation. Following this, we derive the existence of appropriately scaled initial data and can bound the difference between the analytical solution and the approximating sequence.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-022-01803-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Asymptotic series ; Convergence ; Engineering ; Euler-Bernoulli beams ; Exact solutions ; Mathematical analysis ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics ; Wave equations</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-08, Vol.73 (4), Article 166</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7e7dfc006b18ff2915d9f460dd78b9eff13f2fcd649b835eb867bad242eb31fc3</citedby><cites>FETCH-LOGICAL-c363t-7e7dfc006b18ff2915d9f460dd78b9eff13f2fcd649b835eb867bad242eb31fc3</cites><orcidid>0000-0002-6606-4352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-022-01803-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-022-01803-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Abels, Helmut</creatorcontrib><creatorcontrib>Ameismeier, Tobias</creatorcontrib><title>Convergence of thin vibrating rods to a linear beam equation</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam equation. Following this, we derive the existence of appropriately scaled initial data and can bound the difference between the analytical solution and the approximating sequence.</description><subject>Approximation</subject><subject>Asymptotic series</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Euler-Bernoulli beams</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave equations</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfQmmeYBbqT4goIbXYdkktQpbdIm00L_vaMjuHN1F-c758KH0DWFWwog7yoAcE6AMQJUASfHEzShDQOigetTNAFoGsKYnJ2ji1pXAy4p8Am6n-d0CGUZUhtwjrj_7BI-dK7YvktLXLKvuM_Y4nWXgi3YBbvBYbcf4pwu0Vm06xqufu8UfTw9vs9fyOLt-XX-sCAtF7wnMkgfWwDhqIqRaTrzOjYCvJfK6RAj5ZHF1otGO8VnwSkhnfWsYcFxGls-RTfj7rbk3T7U3qzyvqThpWFCaaEYFzBQbKTakmstIZpt6Ta2HA0F823JjJbMYMn8WDLHocTHUh3gtAzlb_qf1hdh4Gq6</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Abels, Helmut</creator><creator>Ameismeier, Tobias</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6606-4352</orcidid></search><sort><creationdate>20220801</creationdate><title>Convergence of thin vibrating rods to a linear beam equation</title><author>Abels, Helmut ; Ameismeier, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7e7dfc006b18ff2915d9f460dd78b9eff13f2fcd649b835eb867bad242eb31fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Asymptotic series</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Euler-Bernoulli beams</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abels, Helmut</creatorcontrib><creatorcontrib>Ameismeier, Tobias</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abels, Helmut</au><au>Ameismeier, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of thin vibrating rods to a linear beam equation</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>73</volume><issue>4</issue><artnum>166</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam equation. Following this, we derive the existence of appropriately scaled initial data and can bound the difference between the analytical solution and the approximating sequence.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-022-01803-y</doi><orcidid>https://orcid.org/0000-0002-6606-4352</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2022-08, Vol.73 (4), Article 166 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2689682360 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Asymptotic series Convergence Engineering Euler-Bernoulli beams Exact solutions Mathematical analysis Mathematical Methods in Physics Theoretical and Applied Mechanics Wave equations |
title | Convergence of thin vibrating rods to a linear beam equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A43%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20thin%20vibrating%20rods%20to%20a%20linear%20beam%20equation&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Abels,%20Helmut&rft.date=2022-08-01&rft.volume=73&rft.issue=4&rft.artnum=166&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-022-01803-y&rft_dat=%3Cproquest_cross%3E2689682360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689682360&rft_id=info:pmid/&rfr_iscdi=true |