Convergence of thin vibrating rods to a linear beam equation
We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-08, Vol.73 (4), Article 166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that solutions for a specifically scaled nonlinear wave equation of nonlinear elasticity converge to solutions of a linear Euler–Bernoulli beam system. We construct an approximation of the solution, using a suitable asymptotic expansion ansatz based upon solutions to the one-dimensional beam equation. Following this, we derive the existence of appropriately scaled initial data and can bound the difference between the analytical solution and the approximating sequence. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-022-01803-y |