Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives

An assessment of the cascade adsorption-compression refrigeration system by adopting renewable energy for cold storage applications based on energy, exergy, exergoeconomic, and enviroeconomic perspectives is presented. The cascade cycle aims to dwindle the electric power of the compression subcycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2022-08, Vol.253, p.124127, Article 124127
Hauptverfasser: Gado, Mohamed G., Ookawara, Shinichi, Nada, Sameh, Hassan, Hamdy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An assessment of the cascade adsorption-compression refrigeration system by adopting renewable energy for cold storage applications based on energy, exergy, exergoeconomic, and enviroeconomic perspectives is presented. The cascade cycle aims to dwindle the electric power of the compression subcycle with reduced condensation pressure. The thermodynamic modeling of the proposed system is developed at climatic conditions of Alexandria/Egypt for two scenarios of renewable systems, including (i) biomass-solar (Scenario-I) and (ii) biomass-solar-wind (Scenario-II). The results demonstrate that the COP of the cascade system is ameliorated by 41.6% compared to the conventional compression system; highlighting an energy saving of 42%. The proposed system has an annual average COP and exergetic efficiency of 0.122 and 1.78%, respectively for Scenario-I and 0.124 and 1.8%, respectively for Scenario-II. Scenario-I and Scenario-II deliver refrigeration at 0.235 $/kWh, and 0.237 $/kWh, respectively. Herein, the exergoeconomic parameter for Scenario-I and Scenario-II is 0.70 kWh/$ and 0.69 kWh/$, respectively. It is found that both scenarios alleviate about 32.75 and 5.35 tons of CO2 per annum based on environmental and exergoenvironmental standpoints, respectively. Besides, the enviroeconomic and exergoenvironmental parameters are about 474.90 $/kW and 77.60 $/kW respectively, over the project lifespan of 20 years for both scenarios. •A hybrid renewable-powered adsorption-compression system is introduced.•The cascade system's COP is enhanced by 41.6% compared to the compression system.•The performance of Biomass + Solar + Wind system is superior to Biomass + Solar system.•Biomass + Solar system is economically better than Biomass + Solar + Wind system.•The proposed system could mitigate about 32.75 tons/year of CO2.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2022.124127