Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE

In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics and Applications 2015-01, Vol.6 (2), p.41
Hauptverfasser: B.V. K. Bharadwaj, Baruah, Pallav Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 41
container_title Communications in Mathematics and Applications
container_volume 6
creator B.V. K. Bharadwaj
Baruah, Pallav Kumar
description In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solution for equation (0.1). These conditions are generalized with respect to the nonlinear function \(F\) and are in the spirit of the classical result by Atkinson [1].
doi_str_mv 10.26713/cma.v6i2.289
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2689195960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689195960</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-c4ebbbef2e7d2f209cb85344d430319c09606966be7f079d3c3957d94b19bed53</originalsourceid><addsrcrecordid>eNotjUtLAzEYRYMoWGqX7gOuM-ad-ZZSRysUZ6Guy-QxMmVMajIj_nxrdXUv3MO5CF0zWnFtmLh1H131pQde8RrO0IKCUaTW1JyfuiYKqLpEq1L2lFIOWhoBC7RpvocyhegCTj3u8HOKpC1uGMduGuI7LmmcpyFF3Kd8nF-CS9HjNvuQf9lxiKHLuL1vrtBF340lrP5zid4emtf1hmzbx6f13ZYcGBMTcTJYa0PPg_G85xScrZWQ0ktBBQNHQVMNWttgemrACydAGQ_SMrDBK7FEN3_eQ06fcyjTbp_mHI-XO65rYKCOBvEDOadOQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689195960</pqid></control><display><type>article</type><title>Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>B.V. K. Bharadwaj ; Baruah, Pallav Kumar</creator><creatorcontrib>B.V. K. Bharadwaj ; Baruah, Pallav Kumar</creatorcontrib><description>In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solution for equation (0.1). These conditions are generalized with respect to the nonlinear function \(F\) and are in the spirit of the classical result by Atkinson [1].</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v6i2.289</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Nonlinear differential equations</subject><ispartof>Communications in Mathematics and Applications, 2015-01, Vol.6 (2), p.41</ispartof><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>B.V. K. Bharadwaj</creatorcontrib><creatorcontrib>Baruah, Pallav Kumar</creatorcontrib><title>Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE</title><title>Communications in Mathematics and Applications</title><description>In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solution for equation (0.1). These conditions are generalized with respect to the nonlinear function \(F\) and are in the spirit of the classical result by Atkinson [1].</description><subject>Nonlinear differential equations</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjUtLAzEYRYMoWGqX7gOuM-ad-ZZSRysUZ6Guy-QxMmVMajIj_nxrdXUv3MO5CF0zWnFtmLh1H131pQde8RrO0IKCUaTW1JyfuiYKqLpEq1L2lFIOWhoBC7RpvocyhegCTj3u8HOKpC1uGMduGuI7LmmcpyFF3Kd8nF-CS9HjNvuQf9lxiKHLuL1vrtBF340lrP5zid4emtf1hmzbx6f13ZYcGBMTcTJYa0PPg_G85xScrZWQ0ktBBQNHQVMNWttgemrACydAGQ_SMrDBK7FEN3_eQ06fcyjTbp_mHI-XO65rYKCOBvEDOadOQQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>B.V. K. Bharadwaj</creator><creator>Baruah, Pallav Kumar</creator><general>RGN Publications</general><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150101</creationdate><title>Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE</title><author>B.V. K. Bharadwaj ; Baruah, Pallav Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-c4ebbbef2e7d2f209cb85344d430319c09606966be7f079d3c3957d94b19bed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Nonlinear differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>B.V. K. Bharadwaj</creatorcontrib><creatorcontrib>Baruah, Pallav Kumar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>B.V. K. Bharadwaj</au><au>Baruah, Pallav Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>6</volume><issue>2</issue><spage>41</spage><pages>41-</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solution for equation (0.1). These conditions are generalized with respect to the nonlinear function \(F\) and are in the spirit of the classical result by Atkinson [1].</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v6i2.289</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-5905
ispartof Communications in Mathematics and Applications, 2015-01, Vol.6 (2), p.41
issn 0976-5905
0975-8607
language eng
recordid cdi_proquest_journals_2689195960
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Nonlinear differential equations
title Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20a%20Non-Oscillating%20solution%20for%20a%20Second%20Order%20Nonlinear%20ODE&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=B.V.%20K.%20Bharadwaj&rft.date=2015-01-01&rft.volume=6&rft.issue=2&rft.spage=41&rft.pages=41-&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v6i2.289&rft_dat=%3Cproquest%3E2689195960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689195960&rft_id=info:pmid/&rfr_iscdi=true