Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE
In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solu...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics and Applications 2015-01, Vol.6 (2), p.41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solution for equation (0.1). These conditions are generalized with respect to the nonlinear function \(F\) and are in the spirit of the classical result by Atkinson [1]. |
---|---|
ISSN: | 0976-5905 0975-8607 |
DOI: | 10.26713/cma.v6i2.289 |