Existence of a Non-Oscillating solution for a Second Order Nonlinear ODE

In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics and Applications 2015-01, Vol.6 (2), p.41
Hauptverfasser: B.V. K. Bharadwaj, Baruah, Pallav Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we have considered the following nonlinear ordinary differential equation. $$y''(x) + F(x, y(x)) = 0\tag{0.1}$$ where \(F(t,x(t))\) is real valued function on \([0,\infty) \times R\), \(x\geq 0\). We have given sufficient conditions for the existence of a non oscillating solution for equation (0.1). These conditions are generalized with respect to the nonlinear function \(F\) and are in the spirit of the classical result by Atkinson [1].
ISSN:0976-5905
0975-8607
DOI:10.26713/cma.v6i2.289