Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State

Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-07, Vol.933 (2), p.172
Hauptverfasser: Jones, D. O., Mandel, K. S., Kirshner, R. P., Thorp, S., Challis, P. M., Avelino, A., Brout, D., Burns, C., Foley, R. J., Pan, Y.-C., Scolnic, D. M., Siebert, M. R., Chornock, R., Freedman, W. L., Friedman, A., Frieman, J., Galbany, L., Hsiao, E., Kelsey, L., Marion, G. H., Nichol, R. C., Nugent, P. E., Phillips, M. M., Rest, A., Riess, A. G., Sako, M., Smith, M., Wiseman, P., Wood-Vasey, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 172
container_title The Astrophysical journal
container_volume 933
creator Jones, D. O.
Mandel, K. S.
Kirshner, R. P.
Thorp, S.
Challis, P. M.
Avelino, A.
Brout, D.
Burns, C.
Foley, R. J.
Pan, Y.-C.
Scolnic, D. M.
Siebert, M. R.
Chornock, R.
Freedman, W. L.
Friedman, A.
Frieman, J.
Galbany, L.
Hsiao, E.
Kelsey, L.
Marion, G. H.
Nichol, R. C.
Nugent, P. E.
Phillips, M. M.
Rest, A.
Riess, A. G.
Sako, M.
Smith, M.
Wiseman, P.
Wood-Vasey, W. M.
description Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ z ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher- z HST data with 42 SNe Ia at z < 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, w . We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5 σ −2.5 σ significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + w = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure H 0 = 75.9 ± 2.2 km s −1 Mpc −1 from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus H 0 = 71.2 ± 3.8 km s −1 Mpc −1 using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + w = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + w = −0.06 ± 0.07; these shifts of up to ∼0.11 in w could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low- z samples, new light-curve models, calibration improvements, and eventually by building high- z samples from the Roman Space Telescope.
doi_str_mv 10.3847/1538-4357/ac755b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689188548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689188548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</originalsourceid><addsrcrecordid>eNp1kUFr20AQhUVpIW7ae44DPRWqZlerXa16M47bCFwnxAn0tozVka1U1iq7K4N_Sf9upaikp56GeXzvMcOLogvOPgudZpdcCh2nQmaXWGZSbl9FsxfpdTRjjKWxEtmPs-it94_jmuT5LPq9sP5gG7urS2zgjnzfBA-VswcIe4K7ebEp1rDp3ZFOX-DB1-0O7k8dQYGD2pFr7REJ6vYZXxM6KNrKoaOfgB4Q1vZIDdxi2EOw8J3Q946e4St0v2DZktudYPnUY6htC7aCTcBA76I3FTae3v-d59HD1-X94jpe3XwrFvNVXA5fh1iUpc5USnkqtWSYlpxXSlIuSr2tEqWUyLXkqImyhCuZcsVypG0lGCtVirk4jz5OuXtsTOfqA7qTsVib6_nKjBoTWZIlUh75wH6Y2M7Zp558MI-2d-1wnkmUzrnWMtUDxSaqdNZ7R9VLLGdmrMqMvZixFzNVNVg-TZbadv8y_4v_AU27kzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689188548</pqid></control><display><type>article</type><title>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Jones, D. O. ; Mandel, K. S. ; Kirshner, R. P. ; Thorp, S. ; Challis, P. M. ; Avelino, A. ; Brout, D. ; Burns, C. ; Foley, R. J. ; Pan, Y.-C. ; Scolnic, D. M. ; Siebert, M. R. ; Chornock, R. ; Freedman, W. L. ; Friedman, A. ; Frieman, J. ; Galbany, L. ; Hsiao, E. ; Kelsey, L. ; Marion, G. H. ; Nichol, R. C. ; Nugent, P. E. ; Phillips, M. M. ; Rest, A. ; Riess, A. G. ; Sako, M. ; Smith, M. ; Wiseman, P. ; Wood-Vasey, W. M.</creator><creatorcontrib>Jones, D. O. ; Mandel, K. S. ; Kirshner, R. P. ; Thorp, S. ; Challis, P. M. ; Avelino, A. ; Brout, D. ; Burns, C. ; Foley, R. J. ; Pan, Y.-C. ; Scolnic, D. M. ; Siebert, M. R. ; Chornock, R. ; Freedman, W. L. ; Friedman, A. ; Frieman, J. ; Galbany, L. ; Hsiao, E. ; Kelsey, L. ; Marion, G. H. ; Nichol, R. C. ; Nugent, P. E. ; Phillips, M. M. ; Rest, A. ; Riess, A. G. ; Sako, M. ; Smith, M. ; Wiseman, P. ; Wood-Vasey, W. M.</creatorcontrib><description>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ z ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher- z HST data with 42 SNe Ia at z &lt; 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, w . We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5 σ −2.5 σ significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + w = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure H 0 = 75.9 ± 2.2 km s −1 Mpc −1 from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus H 0 = 71.2 ± 3.8 km s −1 Mpc −1 using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + w = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + w = −0.06 ± 0.07; these shifts of up to ∼0.11 in w could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low- z samples, new light-curve models, calibration improvements, and eventually by building high- z samples from the Roman Space Telescope.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac755b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Calibration ; Candles ; Cosmic microwave background ; Dark energy ; Energy equation ; Equations of state ; Galaxies ; Hubble constant ; Hubble diagram ; Hubble Space Telescope ; Light curve ; Near infrared radiation ; Observational cosmology ; Physics ; Raisins ; Red shift ; Sky surveys (astronomy) ; Space telescopes ; Supernova ; Supernovae ; Systematic errors ; Type Ia supernovae</subject><ispartof>The Astrophysical journal, 2022-07, Vol.933 (2), p.172</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</citedby><cites>FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</cites><orcidid>0000-0002-1966-3942 ; 0000-0002-6230-0151 ; 0000-0003-1039-2928 ; 0000-0002-4410-5387 ; 0000-0001-7113-1233 ; 0000-0003-2734-0796 ; 0000-0003-2445-3891 ; 0000-0001-8415-6720 ; 0000-0002-7706-5668 ; 0000-0002-2938-7822 ; 0000-0002-6124-1196 ; 0000-0003-3431-9135 ; 0000-0001-5201-8374 ; 0000-0003-1334-039X ; 0000-0002-3389-0586 ; 0000-0002-1296-6887 ; 0000-0003-4625-6629 ; 0000-0002-2445-5275 ; 0000-0002-2966-3508 ; 0000-0003-2764-7093 ; 0000-0001-9846-4417 ; 0000-0002-3321-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac755b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03727255$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, D. O.</creatorcontrib><creatorcontrib>Mandel, K. S.</creatorcontrib><creatorcontrib>Kirshner, R. P.</creatorcontrib><creatorcontrib>Thorp, S.</creatorcontrib><creatorcontrib>Challis, P. M.</creatorcontrib><creatorcontrib>Avelino, A.</creatorcontrib><creatorcontrib>Brout, D.</creatorcontrib><creatorcontrib>Burns, C.</creatorcontrib><creatorcontrib>Foley, R. J.</creatorcontrib><creatorcontrib>Pan, Y.-C.</creatorcontrib><creatorcontrib>Scolnic, D. M.</creatorcontrib><creatorcontrib>Siebert, M. R.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><creatorcontrib>Freedman, W. L.</creatorcontrib><creatorcontrib>Friedman, A.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Hsiao, E.</creatorcontrib><creatorcontrib>Kelsey, L.</creatorcontrib><creatorcontrib>Marion, G. H.</creatorcontrib><creatorcontrib>Nichol, R. C.</creatorcontrib><creatorcontrib>Nugent, P. E.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Rest, A.</creatorcontrib><creatorcontrib>Riess, A. G.</creatorcontrib><creatorcontrib>Sako, M.</creatorcontrib><creatorcontrib>Smith, M.</creatorcontrib><creatorcontrib>Wiseman, P.</creatorcontrib><creatorcontrib>Wood-Vasey, W. M.</creatorcontrib><title>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ z ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher- z HST data with 42 SNe Ia at z &lt; 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, w . We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5 σ −2.5 σ significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + w = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure H 0 = 75.9 ± 2.2 km s −1 Mpc −1 from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus H 0 = 71.2 ± 3.8 km s −1 Mpc −1 using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + w = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + w = −0.06 ± 0.07; these shifts of up to ∼0.11 in w could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low- z samples, new light-curve models, calibration improvements, and eventually by building high- z samples from the Roman Space Telescope.</description><subject>Astrophysics</subject><subject>Calibration</subject><subject>Candles</subject><subject>Cosmic microwave background</subject><subject>Dark energy</subject><subject>Energy equation</subject><subject>Equations of state</subject><subject>Galaxies</subject><subject>Hubble constant</subject><subject>Hubble diagram</subject><subject>Hubble Space Telescope</subject><subject>Light curve</subject><subject>Near infrared radiation</subject><subject>Observational cosmology</subject><subject>Physics</subject><subject>Raisins</subject><subject>Red shift</subject><subject>Sky surveys (astronomy)</subject><subject>Space telescopes</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Systematic errors</subject><subject>Type Ia supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kUFr20AQhUVpIW7ae44DPRWqZlerXa16M47bCFwnxAn0tozVka1U1iq7K4N_Sf9upaikp56GeXzvMcOLogvOPgudZpdcCh2nQmaXWGZSbl9FsxfpdTRjjKWxEtmPs-it94_jmuT5LPq9sP5gG7urS2zgjnzfBA-VswcIe4K7ebEp1rDp3ZFOX-DB1-0O7k8dQYGD2pFr7REJ6vYZXxM6KNrKoaOfgB4Q1vZIDdxi2EOw8J3Q946e4St0v2DZktudYPnUY6htC7aCTcBA76I3FTae3v-d59HD1-X94jpe3XwrFvNVXA5fh1iUpc5USnkqtWSYlpxXSlIuSr2tEqWUyLXkqImyhCuZcsVypG0lGCtVirk4jz5OuXtsTOfqA7qTsVib6_nKjBoTWZIlUh75wH6Y2M7Zp558MI-2d-1wnkmUzrnWMtUDxSaqdNZ7R9VLLGdmrMqMvZixFzNVNVg-TZbadv8y_4v_AU27kzk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jones, D. O.</creator><creator>Mandel, K. S.</creator><creator>Kirshner, R. P.</creator><creator>Thorp, S.</creator><creator>Challis, P. M.</creator><creator>Avelino, A.</creator><creator>Brout, D.</creator><creator>Burns, C.</creator><creator>Foley, R. J.</creator><creator>Pan, Y.-C.</creator><creator>Scolnic, D. M.</creator><creator>Siebert, M. R.</creator><creator>Chornock, R.</creator><creator>Freedman, W. L.</creator><creator>Friedman, A.</creator><creator>Frieman, J.</creator><creator>Galbany, L.</creator><creator>Hsiao, E.</creator><creator>Kelsey, L.</creator><creator>Marion, G. H.</creator><creator>Nichol, R. C.</creator><creator>Nugent, P. E.</creator><creator>Phillips, M. M.</creator><creator>Rest, A.</creator><creator>Riess, A. G.</creator><creator>Sako, M.</creator><creator>Smith, M.</creator><creator>Wiseman, P.</creator><creator>Wood-Vasey, W. M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1966-3942</orcidid><orcidid>https://orcid.org/0000-0002-6230-0151</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0002-4410-5387</orcidid><orcidid>https://orcid.org/0000-0001-7113-1233</orcidid><orcidid>https://orcid.org/0000-0003-2734-0796</orcidid><orcidid>https://orcid.org/0000-0003-2445-3891</orcidid><orcidid>https://orcid.org/0000-0001-8415-6720</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><orcidid>https://orcid.org/0000-0002-2938-7822</orcidid><orcidid>https://orcid.org/0000-0002-6124-1196</orcidid><orcidid>https://orcid.org/0000-0003-3431-9135</orcidid><orcidid>https://orcid.org/0000-0001-5201-8374</orcidid><orcidid>https://orcid.org/0000-0003-1334-039X</orcidid><orcidid>https://orcid.org/0000-0002-3389-0586</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-4625-6629</orcidid><orcidid>https://orcid.org/0000-0002-2445-5275</orcidid><orcidid>https://orcid.org/0000-0002-2966-3508</orcidid><orcidid>https://orcid.org/0000-0003-2764-7093</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-3321-1432</orcidid></search><sort><creationdate>20220701</creationdate><title>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</title><author>Jones, D. O. ; Mandel, K. S. ; Kirshner, R. P. ; Thorp, S. ; Challis, P. M. ; Avelino, A. ; Brout, D. ; Burns, C. ; Foley, R. J. ; Pan, Y.-C. ; Scolnic, D. M. ; Siebert, M. R. ; Chornock, R. ; Freedman, W. L. ; Friedman, A. ; Frieman, J. ; Galbany, L. ; Hsiao, E. ; Kelsey, L. ; Marion, G. H. ; Nichol, R. C. ; Nugent, P. E. ; Phillips, M. M. ; Rest, A. ; Riess, A. G. ; Sako, M. ; Smith, M. ; Wiseman, P. ; Wood-Vasey, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Calibration</topic><topic>Candles</topic><topic>Cosmic microwave background</topic><topic>Dark energy</topic><topic>Energy equation</topic><topic>Equations of state</topic><topic>Galaxies</topic><topic>Hubble constant</topic><topic>Hubble diagram</topic><topic>Hubble Space Telescope</topic><topic>Light curve</topic><topic>Near infrared radiation</topic><topic>Observational cosmology</topic><topic>Physics</topic><topic>Raisins</topic><topic>Red shift</topic><topic>Sky surveys (astronomy)</topic><topic>Space telescopes</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Systematic errors</topic><topic>Type Ia supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, D. O.</creatorcontrib><creatorcontrib>Mandel, K. S.</creatorcontrib><creatorcontrib>Kirshner, R. P.</creatorcontrib><creatorcontrib>Thorp, S.</creatorcontrib><creatorcontrib>Challis, P. M.</creatorcontrib><creatorcontrib>Avelino, A.</creatorcontrib><creatorcontrib>Brout, D.</creatorcontrib><creatorcontrib>Burns, C.</creatorcontrib><creatorcontrib>Foley, R. J.</creatorcontrib><creatorcontrib>Pan, Y.-C.</creatorcontrib><creatorcontrib>Scolnic, D. M.</creatorcontrib><creatorcontrib>Siebert, M. R.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><creatorcontrib>Freedman, W. L.</creatorcontrib><creatorcontrib>Friedman, A.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Hsiao, E.</creatorcontrib><creatorcontrib>Kelsey, L.</creatorcontrib><creatorcontrib>Marion, G. H.</creatorcontrib><creatorcontrib>Nichol, R. C.</creatorcontrib><creatorcontrib>Nugent, P. E.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Rest, A.</creatorcontrib><creatorcontrib>Riess, A. G.</creatorcontrib><creatorcontrib>Sako, M.</creatorcontrib><creatorcontrib>Smith, M.</creatorcontrib><creatorcontrib>Wiseman, P.</creatorcontrib><creatorcontrib>Wood-Vasey, W. M.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, D. O.</au><au>Mandel, K. S.</au><au>Kirshner, R. P.</au><au>Thorp, S.</au><au>Challis, P. M.</au><au>Avelino, A.</au><au>Brout, D.</au><au>Burns, C.</au><au>Foley, R. J.</au><au>Pan, Y.-C.</au><au>Scolnic, D. M.</au><au>Siebert, M. R.</au><au>Chornock, R.</au><au>Freedman, W. L.</au><au>Friedman, A.</au><au>Frieman, J.</au><au>Galbany, L.</au><au>Hsiao, E.</au><au>Kelsey, L.</au><au>Marion, G. H.</au><au>Nichol, R. C.</au><au>Nugent, P. E.</au><au>Phillips, M. M.</au><au>Rest, A.</au><au>Riess, A. G.</au><au>Sako, M.</au><au>Smith, M.</au><au>Wiseman, P.</au><au>Wood-Vasey, W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>933</volume><issue>2</issue><spage>172</spage><pages>172-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ z ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher- z HST data with 42 SNe Ia at z &lt; 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, w . We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5 σ −2.5 σ significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + w = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure H 0 = 75.9 ± 2.2 km s −1 Mpc −1 from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus H 0 = 71.2 ± 3.8 km s −1 Mpc −1 using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + w = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + w = −0.06 ± 0.07; these shifts of up to ∼0.11 in w could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low- z samples, new light-curve models, calibration improvements, and eventually by building high- z samples from the Roman Space Telescope.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac755b</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-1966-3942</orcidid><orcidid>https://orcid.org/0000-0002-6230-0151</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0002-4410-5387</orcidid><orcidid>https://orcid.org/0000-0001-7113-1233</orcidid><orcidid>https://orcid.org/0000-0003-2734-0796</orcidid><orcidid>https://orcid.org/0000-0003-2445-3891</orcidid><orcidid>https://orcid.org/0000-0001-8415-6720</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><orcidid>https://orcid.org/0000-0002-2938-7822</orcidid><orcidid>https://orcid.org/0000-0002-6124-1196</orcidid><orcidid>https://orcid.org/0000-0003-3431-9135</orcidid><orcidid>https://orcid.org/0000-0001-5201-8374</orcidid><orcidid>https://orcid.org/0000-0003-1334-039X</orcidid><orcidid>https://orcid.org/0000-0002-3389-0586</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-4625-6629</orcidid><orcidid>https://orcid.org/0000-0002-2445-5275</orcidid><orcidid>https://orcid.org/0000-0002-2966-3508</orcidid><orcidid>https://orcid.org/0000-0003-2764-7093</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-3321-1432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-07, Vol.933 (2), p.172
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2689188548
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection
subjects Astrophysics
Calibration
Candles
Cosmic microwave background
Dark energy
Energy equation
Equations of state
Galaxies
Hubble constant
Hubble diagram
Hubble Space Telescope
Light curve
Near infrared radiation
Observational cosmology
Physics
Raisins
Red shift
Sky surveys (astronomy)
Space telescopes
Supernova
Supernovae
Systematic errors
Type Ia supernovae
title Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmological%20Results%20from%20the%20RAISIN%20Survey:%20Using%20Type%20Ia%20Supernovae%20in%20the%20Near%20Infrared%20as%20a%20Novel%20Path%20to%20Measure%20the%20Dark%20Energy%20Equation%20of%20State&rft.jtitle=The%20Astrophysical%20journal&rft.au=Jones,%20D.%20O.&rft.date=2022-07-01&rft.volume=933&rft.issue=2&rft.spage=172&rft.pages=172-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac755b&rft_dat=%3Cproquest_cross%3E2689188548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689188548&rft_id=info:pmid/&rfr_iscdi=true