Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State
Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-07, Vol.933 (2), p.172 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 172 |
container_title | The Astrophysical journal |
container_volume | 933 |
creator | Jones, D. O. Mandel, K. S. Kirshner, R. P. Thorp, S. Challis, P. M. Avelino, A. Brout, D. Burns, C. Foley, R. J. Pan, Y.-C. Scolnic, D. M. Siebert, M. R. Chornock, R. Freedman, W. L. Friedman, A. Frieman, J. Galbany, L. Hsiao, E. Kelsey, L. Marion, G. H. Nichol, R. C. Nugent, P. E. Phillips, M. M. Rest, A. Riess, A. G. Sako, M. Smith, M. Wiseman, P. Wood-Vasey, W. M. |
description | Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲
z
≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-
z
HST data with 42 SNe Ia at
z
< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,
w
. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5
σ
−2.5
σ
significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +
w
= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure
H
0
= 75.9 ± 2.2 km s
−1
Mpc
−1
from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus
H
0
= 71.2 ± 3.8 km s
−1
Mpc
−1
using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +
w
= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +
w
= −0.06 ± 0.07; these shifts of up to ∼0.11 in
w
could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-
z
samples, new light-curve models, calibration improvements, and eventually by building high-
z
samples from the Roman Space Telescope. |
doi_str_mv | 10.3847/1538-4357/ac755b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689188548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689188548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</originalsourceid><addsrcrecordid>eNp1kUFr20AQhUVpIW7ae44DPRWqZlerXa16M47bCFwnxAn0tozVka1U1iq7K4N_Sf9upaikp56GeXzvMcOLogvOPgudZpdcCh2nQmaXWGZSbl9FsxfpdTRjjKWxEtmPs-it94_jmuT5LPq9sP5gG7urS2zgjnzfBA-VswcIe4K7ebEp1rDp3ZFOX-DB1-0O7k8dQYGD2pFr7REJ6vYZXxM6KNrKoaOfgB4Q1vZIDdxi2EOw8J3Q946e4St0v2DZktudYPnUY6htC7aCTcBA76I3FTae3v-d59HD1-X94jpe3XwrFvNVXA5fh1iUpc5USnkqtWSYlpxXSlIuSr2tEqWUyLXkqImyhCuZcsVypG0lGCtVirk4jz5OuXtsTOfqA7qTsVib6_nKjBoTWZIlUh75wH6Y2M7Zp558MI-2d-1wnkmUzrnWMtUDxSaqdNZ7R9VLLGdmrMqMvZixFzNVNVg-TZbadv8y_4v_AU27kzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689188548</pqid></control><display><type>article</type><title>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Jones, D. O. ; Mandel, K. S. ; Kirshner, R. P. ; Thorp, S. ; Challis, P. M. ; Avelino, A. ; Brout, D. ; Burns, C. ; Foley, R. J. ; Pan, Y.-C. ; Scolnic, D. M. ; Siebert, M. R. ; Chornock, R. ; Freedman, W. L. ; Friedman, A. ; Frieman, J. ; Galbany, L. ; Hsiao, E. ; Kelsey, L. ; Marion, G. H. ; Nichol, R. C. ; Nugent, P. E. ; Phillips, M. M. ; Rest, A. ; Riess, A. G. ; Sako, M. ; Smith, M. ; Wiseman, P. ; Wood-Vasey, W. M.</creator><creatorcontrib>Jones, D. O. ; Mandel, K. S. ; Kirshner, R. P. ; Thorp, S. ; Challis, P. M. ; Avelino, A. ; Brout, D. ; Burns, C. ; Foley, R. J. ; Pan, Y.-C. ; Scolnic, D. M. ; Siebert, M. R. ; Chornock, R. ; Freedman, W. L. ; Friedman, A. ; Frieman, J. ; Galbany, L. ; Hsiao, E. ; Kelsey, L. ; Marion, G. H. ; Nichol, R. C. ; Nugent, P. E. ; Phillips, M. M. ; Rest, A. ; Riess, A. G. ; Sako, M. ; Smith, M. ; Wiseman, P. ; Wood-Vasey, W. M.</creatorcontrib><description>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲
z
≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-
z
HST data with 42 SNe Ia at
z
< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,
w
. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5
σ
−2.5
σ
significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +
w
= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure
H
0
= 75.9 ± 2.2 km s
−1
Mpc
−1
from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus
H
0
= 71.2 ± 3.8 km s
−1
Mpc
−1
using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +
w
= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +
w
= −0.06 ± 0.07; these shifts of up to ∼0.11 in
w
could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-
z
samples, new light-curve models, calibration improvements, and eventually by building high-
z
samples from the Roman Space Telescope.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac755b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Calibration ; Candles ; Cosmic microwave background ; Dark energy ; Energy equation ; Equations of state ; Galaxies ; Hubble constant ; Hubble diagram ; Hubble Space Telescope ; Light curve ; Near infrared radiation ; Observational cosmology ; Physics ; Raisins ; Red shift ; Sky surveys (astronomy) ; Space telescopes ; Supernova ; Supernovae ; Systematic errors ; Type Ia supernovae</subject><ispartof>The Astrophysical journal, 2022-07, Vol.933 (2), p.172</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</citedby><cites>FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</cites><orcidid>0000-0002-1966-3942 ; 0000-0002-6230-0151 ; 0000-0003-1039-2928 ; 0000-0002-4410-5387 ; 0000-0001-7113-1233 ; 0000-0003-2734-0796 ; 0000-0003-2445-3891 ; 0000-0001-8415-6720 ; 0000-0002-7706-5668 ; 0000-0002-2938-7822 ; 0000-0002-6124-1196 ; 0000-0003-3431-9135 ; 0000-0001-5201-8374 ; 0000-0003-1334-039X ; 0000-0002-3389-0586 ; 0000-0002-1296-6887 ; 0000-0003-4625-6629 ; 0000-0002-2445-5275 ; 0000-0002-2966-3508 ; 0000-0003-2764-7093 ; 0000-0001-9846-4417 ; 0000-0002-3321-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac755b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,27901,27902,38867,53842</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03727255$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, D. O.</creatorcontrib><creatorcontrib>Mandel, K. S.</creatorcontrib><creatorcontrib>Kirshner, R. P.</creatorcontrib><creatorcontrib>Thorp, S.</creatorcontrib><creatorcontrib>Challis, P. M.</creatorcontrib><creatorcontrib>Avelino, A.</creatorcontrib><creatorcontrib>Brout, D.</creatorcontrib><creatorcontrib>Burns, C.</creatorcontrib><creatorcontrib>Foley, R. J.</creatorcontrib><creatorcontrib>Pan, Y.-C.</creatorcontrib><creatorcontrib>Scolnic, D. M.</creatorcontrib><creatorcontrib>Siebert, M. R.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><creatorcontrib>Freedman, W. L.</creatorcontrib><creatorcontrib>Friedman, A.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Hsiao, E.</creatorcontrib><creatorcontrib>Kelsey, L.</creatorcontrib><creatorcontrib>Marion, G. H.</creatorcontrib><creatorcontrib>Nichol, R. C.</creatorcontrib><creatorcontrib>Nugent, P. E.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Rest, A.</creatorcontrib><creatorcontrib>Riess, A. G.</creatorcontrib><creatorcontrib>Sako, M.</creatorcontrib><creatorcontrib>Smith, M.</creatorcontrib><creatorcontrib>Wiseman, P.</creatorcontrib><creatorcontrib>Wood-Vasey, W. M.</creatorcontrib><title>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲
z
≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-
z
HST data with 42 SNe Ia at
z
< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,
w
. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5
σ
−2.5
σ
significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +
w
= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure
H
0
= 75.9 ± 2.2 km s
−1
Mpc
−1
from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus
H
0
= 71.2 ± 3.8 km s
−1
Mpc
−1
using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +
w
= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +
w
= −0.06 ± 0.07; these shifts of up to ∼0.11 in
w
could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-
z
samples, new light-curve models, calibration improvements, and eventually by building high-
z
samples from the Roman Space Telescope.</description><subject>Astrophysics</subject><subject>Calibration</subject><subject>Candles</subject><subject>Cosmic microwave background</subject><subject>Dark energy</subject><subject>Energy equation</subject><subject>Equations of state</subject><subject>Galaxies</subject><subject>Hubble constant</subject><subject>Hubble diagram</subject><subject>Hubble Space Telescope</subject><subject>Light curve</subject><subject>Near infrared radiation</subject><subject>Observational cosmology</subject><subject>Physics</subject><subject>Raisins</subject><subject>Red shift</subject><subject>Sky surveys (astronomy)</subject><subject>Space telescopes</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Systematic errors</subject><subject>Type Ia supernovae</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kUFr20AQhUVpIW7ae44DPRWqZlerXa16M47bCFwnxAn0tozVka1U1iq7K4N_Sf9upaikp56GeXzvMcOLogvOPgudZpdcCh2nQmaXWGZSbl9FsxfpdTRjjKWxEtmPs-it94_jmuT5LPq9sP5gG7urS2zgjnzfBA-VswcIe4K7ebEp1rDp3ZFOX-DB1-0O7k8dQYGD2pFr7REJ6vYZXxM6KNrKoaOfgB4Q1vZIDdxi2EOw8J3Q946e4St0v2DZktudYPnUY6htC7aCTcBA76I3FTae3v-d59HD1-X94jpe3XwrFvNVXA5fh1iUpc5USnkqtWSYlpxXSlIuSr2tEqWUyLXkqImyhCuZcsVypG0lGCtVirk4jz5OuXtsTOfqA7qTsVib6_nKjBoTWZIlUh75wH6Y2M7Zp558MI-2d-1wnkmUzrnWMtUDxSaqdNZ7R9VLLGdmrMqMvZixFzNVNVg-TZbadv8y_4v_AU27kzk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jones, D. O.</creator><creator>Mandel, K. S.</creator><creator>Kirshner, R. P.</creator><creator>Thorp, S.</creator><creator>Challis, P. M.</creator><creator>Avelino, A.</creator><creator>Brout, D.</creator><creator>Burns, C.</creator><creator>Foley, R. J.</creator><creator>Pan, Y.-C.</creator><creator>Scolnic, D. M.</creator><creator>Siebert, M. R.</creator><creator>Chornock, R.</creator><creator>Freedman, W. L.</creator><creator>Friedman, A.</creator><creator>Frieman, J.</creator><creator>Galbany, L.</creator><creator>Hsiao, E.</creator><creator>Kelsey, L.</creator><creator>Marion, G. H.</creator><creator>Nichol, R. C.</creator><creator>Nugent, P. E.</creator><creator>Phillips, M. M.</creator><creator>Rest, A.</creator><creator>Riess, A. G.</creator><creator>Sako, M.</creator><creator>Smith, M.</creator><creator>Wiseman, P.</creator><creator>Wood-Vasey, W. M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1966-3942</orcidid><orcidid>https://orcid.org/0000-0002-6230-0151</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0002-4410-5387</orcidid><orcidid>https://orcid.org/0000-0001-7113-1233</orcidid><orcidid>https://orcid.org/0000-0003-2734-0796</orcidid><orcidid>https://orcid.org/0000-0003-2445-3891</orcidid><orcidid>https://orcid.org/0000-0001-8415-6720</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><orcidid>https://orcid.org/0000-0002-2938-7822</orcidid><orcidid>https://orcid.org/0000-0002-6124-1196</orcidid><orcidid>https://orcid.org/0000-0003-3431-9135</orcidid><orcidid>https://orcid.org/0000-0001-5201-8374</orcidid><orcidid>https://orcid.org/0000-0003-1334-039X</orcidid><orcidid>https://orcid.org/0000-0002-3389-0586</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-4625-6629</orcidid><orcidid>https://orcid.org/0000-0002-2445-5275</orcidid><orcidid>https://orcid.org/0000-0002-2966-3508</orcidid><orcidid>https://orcid.org/0000-0003-2764-7093</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-3321-1432</orcidid></search><sort><creationdate>20220701</creationdate><title>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</title><author>Jones, D. O. ; Mandel, K. S. ; Kirshner, R. P. ; Thorp, S. ; Challis, P. M. ; Avelino, A. ; Brout, D. ; Burns, C. ; Foley, R. J. ; Pan, Y.-C. ; Scolnic, D. M. ; Siebert, M. R. ; Chornock, R. ; Freedman, W. L. ; Friedman, A. ; Frieman, J. ; Galbany, L. ; Hsiao, E. ; Kelsey, L. ; Marion, G. H. ; Nichol, R. C. ; Nugent, P. E. ; Phillips, M. M. ; Rest, A. ; Riess, A. G. ; Sako, M. ; Smith, M. ; Wiseman, P. ; Wood-Vasey, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3cc8764e945850a4c11f65e93c8bf266639851a8ee7216541609aebf300c64a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Calibration</topic><topic>Candles</topic><topic>Cosmic microwave background</topic><topic>Dark energy</topic><topic>Energy equation</topic><topic>Equations of state</topic><topic>Galaxies</topic><topic>Hubble constant</topic><topic>Hubble diagram</topic><topic>Hubble Space Telescope</topic><topic>Light curve</topic><topic>Near infrared radiation</topic><topic>Observational cosmology</topic><topic>Physics</topic><topic>Raisins</topic><topic>Red shift</topic><topic>Sky surveys (astronomy)</topic><topic>Space telescopes</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Systematic errors</topic><topic>Type Ia supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, D. O.</creatorcontrib><creatorcontrib>Mandel, K. S.</creatorcontrib><creatorcontrib>Kirshner, R. P.</creatorcontrib><creatorcontrib>Thorp, S.</creatorcontrib><creatorcontrib>Challis, P. M.</creatorcontrib><creatorcontrib>Avelino, A.</creatorcontrib><creatorcontrib>Brout, D.</creatorcontrib><creatorcontrib>Burns, C.</creatorcontrib><creatorcontrib>Foley, R. J.</creatorcontrib><creatorcontrib>Pan, Y.-C.</creatorcontrib><creatorcontrib>Scolnic, D. M.</creatorcontrib><creatorcontrib>Siebert, M. R.</creatorcontrib><creatorcontrib>Chornock, R.</creatorcontrib><creatorcontrib>Freedman, W. L.</creatorcontrib><creatorcontrib>Friedman, A.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Hsiao, E.</creatorcontrib><creatorcontrib>Kelsey, L.</creatorcontrib><creatorcontrib>Marion, G. H.</creatorcontrib><creatorcontrib>Nichol, R. C.</creatorcontrib><creatorcontrib>Nugent, P. E.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Rest, A.</creatorcontrib><creatorcontrib>Riess, A. G.</creatorcontrib><creatorcontrib>Sako, M.</creatorcontrib><creatorcontrib>Smith, M.</creatorcontrib><creatorcontrib>Wiseman, P.</creatorcontrib><creatorcontrib>Wood-Vasey, W. M.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, D. O.</au><au>Mandel, K. S.</au><au>Kirshner, R. P.</au><au>Thorp, S.</au><au>Challis, P. M.</au><au>Avelino, A.</au><au>Brout, D.</au><au>Burns, C.</au><au>Foley, R. J.</au><au>Pan, Y.-C.</au><au>Scolnic, D. M.</au><au>Siebert, M. R.</au><au>Chornock, R.</au><au>Freedman, W. L.</au><au>Friedman, A.</au><au>Frieman, J.</au><au>Galbany, L.</au><au>Hsiao, E.</au><au>Kelsey, L.</au><au>Marion, G. H.</au><au>Nichol, R. C.</au><au>Nugent, P. E.</au><au>Phillips, M. M.</au><au>Rest, A.</au><au>Riess, A. G.</au><au>Sako, M.</au><au>Smith, M.</au><au>Wiseman, P.</au><au>Wood-Vasey, W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>933</volume><issue>2</issue><spage>172</spage><pages>172-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲
z
≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-
z
HST data with 42 SNe Ia at
z
< 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter,
w
. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5
σ
−2.5
σ
significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 +
w
= −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure
H
0
= 75.9 ± 2.2 km s
−1
Mpc
−1
from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus
H
0
= 71.2 ± 3.8 km s
−1
Mpc
−1
using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 +
w
= −0.10 ± 0.09, and with optical and NIR data combined, we find 1 +
w
= −0.06 ± 0.07; these shifts of up to ∼0.11 in
w
could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-
z
samples, new light-curve models, calibration improvements, and eventually by building high-
z
samples from the Roman Space Telescope.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac755b</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-1966-3942</orcidid><orcidid>https://orcid.org/0000-0002-6230-0151</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0002-4410-5387</orcidid><orcidid>https://orcid.org/0000-0001-7113-1233</orcidid><orcidid>https://orcid.org/0000-0003-2734-0796</orcidid><orcidid>https://orcid.org/0000-0003-2445-3891</orcidid><orcidid>https://orcid.org/0000-0001-8415-6720</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><orcidid>https://orcid.org/0000-0002-2938-7822</orcidid><orcidid>https://orcid.org/0000-0002-6124-1196</orcidid><orcidid>https://orcid.org/0000-0003-3431-9135</orcidid><orcidid>https://orcid.org/0000-0001-5201-8374</orcidid><orcidid>https://orcid.org/0000-0003-1334-039X</orcidid><orcidid>https://orcid.org/0000-0002-3389-0586</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-4625-6629</orcidid><orcidid>https://orcid.org/0000-0002-2445-5275</orcidid><orcidid>https://orcid.org/0000-0002-2966-3508</orcidid><orcidid>https://orcid.org/0000-0003-2764-7093</orcidid><orcidid>https://orcid.org/0000-0001-9846-4417</orcidid><orcidid>https://orcid.org/0000-0002-3321-1432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-07, Vol.933 (2), p.172 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2689188548 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection |
subjects | Astrophysics Calibration Candles Cosmic microwave background Dark energy Energy equation Equations of state Galaxies Hubble constant Hubble diagram Hubble Space Telescope Light curve Near infrared radiation Observational cosmology Physics Raisins Red shift Sky surveys (astronomy) Space telescopes Supernova Supernovae Systematic errors Type Ia supernovae |
title | Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmological%20Results%20from%20the%20RAISIN%20Survey:%20Using%20Type%20Ia%20Supernovae%20in%20the%20Near%20Infrared%20as%20a%20Novel%20Path%20to%20Measure%20the%20Dark%20Energy%20Equation%20of%20State&rft.jtitle=The%20Astrophysical%20journal&rft.au=Jones,%20D.%20O.&rft.date=2022-07-01&rft.volume=933&rft.issue=2&rft.spage=172&rft.pages=172-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac755b&rft_dat=%3Cproquest_cross%3E2689188548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689188548&rft_id=info:pmid/&rfr_iscdi=true |