Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State

Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-07, Vol.933 (2), p.172
Hauptverfasser: Jones, D. O., Mandel, K. S., Kirshner, R. P., Thorp, S., Challis, P. M., Avelino, A., Brout, D., Burns, C., Foley, R. J., Pan, Y.-C., Scolnic, D. M., Siebert, M. R., Chornock, R., Freedman, W. L., Friedman, A., Frieman, J., Galbany, L., Hsiao, E., Kelsey, L., Marion, G. H., Nichol, R. C., Nugent, P. E., Phillips, M. M., Rest, A., Riess, A. G., Sako, M., Smith, M., Wiseman, P., Wood-Vasey, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ z ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher- z HST data with 42 SNe Ia at z < 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, w . We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5 σ −2.5 σ significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + w = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure H 0 = 75.9 ± 2.2 km s −1 Mpc −1 from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus H 0 = 71.2 ± 3.8 km s −1 Mpc −1 using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + w = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + w = −0.06 ± 0.07; these shifts of up to ∼0.11 in w could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low- z samples, new light-curve models, calibration improvements, and eventually by building high- z samples from the Roman Space Telescope.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac755b