On Rings Whose Quasi-Projective Modules Are Projective or Semisimple
For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we stu...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics and Applications 2021-01, Vol.12 (2), p.295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 295 |
container_title | Communications in Mathematics and Applications |
container_volume | 12 |
creator | Ertas, Nil Orhan Acar, Ummahan |
description | For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring \(R\) right semi-Artinian if and only if for any right \(R\)-module \(M\), \(P_M(M)\leq_e M\). |
doi_str_mv | 10.26713/cma.v12i2.1490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689167155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689167155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-d2cfc74edd634a5f7e790ef047ca910242ffd739e52be2d4ba14daee449a8fa13</originalsourceid><addsrcrecordid>eNpN0E1LAzEQBuAgCpbas9eA590m2WTTHEv9qFCpn3gMaTLRlO6mJt2C_9619eBphuFlZngQuqSkZLWk1dg2ptxTFlhJuSInaECUFMWkJvL00NeFUESco1HOa0IIUzWXlRqg62WLn0P7kfH7Z8yAnzqTQ_GY4hrsLuwBP0TXbSDjaQL8bxwTfoEm5NBsN3CBzrzZZBj91SF6u715nc2LxfLufjZdFJaKalc4Zr2VHJyrK26ElyAVAU-4tEZRwjjz3vVfgWArYI6vDOXOAHCuzMQbWg3R1XHvNsWvDvJOr2OX2v6kZvVE0V5CiD41PqZsijkn8HqbQmPSt6ZEH7R0r6UPWvpXq_oBsCBeQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689167155</pqid></control><display><type>article</type><title>On Rings Whose Quasi-Projective Modules Are Projective or Semisimple</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ertas, Nil Orhan ; Acar, Ummahan</creator><creatorcontrib>Ertas, Nil Orhan ; Acar, Ummahan</creatorcontrib><description>For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring \(R\) right semi-Artinian if and only if for any right \(R\)-module \(M\), \(P_M(M)\leq_e M\).</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v12i2.1490</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Mathematics ; Middle class ; Modules</subject><ispartof>Communications in Mathematics and Applications, 2021-01, Vol.12 (2), p.295</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ertas, Nil Orhan</creatorcontrib><creatorcontrib>Acar, Ummahan</creatorcontrib><title>On Rings Whose Quasi-Projective Modules Are Projective or Semisimple</title><title>Communications in Mathematics and Applications</title><description>For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring \(R\) right semi-Artinian if and only if for any right \(R\)-module \(M\), \(P_M(M)\leq_e M\).</description><subject>Mathematics</subject><subject>Middle class</subject><subject>Modules</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpN0E1LAzEQBuAgCpbas9eA590m2WTTHEv9qFCpn3gMaTLRlO6mJt2C_9619eBphuFlZngQuqSkZLWk1dg2ptxTFlhJuSInaECUFMWkJvL00NeFUESco1HOa0IIUzWXlRqg62WLn0P7kfH7Z8yAnzqTQ_GY4hrsLuwBP0TXbSDjaQL8bxwTfoEm5NBsN3CBzrzZZBj91SF6u715nc2LxfLufjZdFJaKalc4Zr2VHJyrK26ElyAVAU-4tEZRwjjz3vVfgWArYI6vDOXOAHCuzMQbWg3R1XHvNsWvDvJOr2OX2v6kZvVE0V5CiD41PqZsijkn8HqbQmPSt6ZEH7R0r6UPWvpXq_oBsCBeQg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ertas, Nil Orhan</creator><creator>Acar, Ummahan</creator><general>RGN Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210101</creationdate><title>On Rings Whose Quasi-Projective Modules Are Projective or Semisimple</title><author>Ertas, Nil Orhan ; Acar, Ummahan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-d2cfc74edd634a5f7e790ef047ca910242ffd739e52be2d4ba14daee449a8fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Middle class</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Ertas, Nil Orhan</creatorcontrib><creatorcontrib>Acar, Ummahan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ertas, Nil Orhan</au><au>Acar, Ummahan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Rings Whose Quasi-Projective Modules Are Projective or Semisimple</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>295</spage><pages>295-</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring \(R\) right semi-Artinian if and only if for any right \(R\)-module \(M\), \(P_M(M)\leq_e M\).</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v12i2.1490</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0976-5905 |
ispartof | Communications in Mathematics and Applications, 2021-01, Vol.12 (2), p.295 |
issn | 0976-5905 0975-8607 |
language | eng |
recordid | cdi_proquest_journals_2689167155 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Mathematics Middle class Modules |
title | On Rings Whose Quasi-Projective Modules Are Projective or Semisimple |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Rings%20Whose%20Quasi-Projective%20Modules%20Are%20Projective%20or%20Semisimple&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Ertas,%20Nil%20Orhan&rft.date=2021-01-01&rft.volume=12&rft.issue=2&rft.spage=295&rft.pages=295-&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v12i2.1490&rft_dat=%3Cproquest_cross%3E2689167155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689167155&rft_id=info:pmid/&rfr_iscdi=true |