On Rings Whose Quasi-Projective Modules Are Projective or Semisimple

For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics and Applications 2021-01, Vol.12 (2), p.295
Hauptverfasser: Ertas, Nil Orhan, Acar, Ummahan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For two modules \(M\) and \(N\), \(P_M(N)\) stands for the largest submodule of \(N\) relative to which \(M\) is projective. For any module \(M\), \(P_M(N)\) defines a left exact preradical. It is given some properties of \(P_M(N)\).\ We express \(P_M(N)\) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring \(R\) right semi-Artinian if and only if for any right \(R\)-module \(M\), \(P_M(M)\leq_e M\).
ISSN:0976-5905
0975-8607
DOI:10.26713/cma.v12i2.1490