From liquid metal to stretchable electronics: Overcoming the surface tension
The field of stretchable electronics mainly includes electronic products conformal with tissues, being integrated into skin or clothing. Since these products need to work during deformation, their requirements for materials focus on stretchability and conductivity. Liquid metals are excellent materi...
Gespeichert in:
Veröffentlicht in: | Science China materials 2022-08, Vol.65 (8), p.2072-2088 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The field of stretchable electronics mainly includes electronic products conformal with tissues, being integrated into skin or clothing. Since these products need to work during deformation, their requirements for materials focus on stretchability and conductivity. Liquid metals are excellent materials with these properties. However, liquid metals have extremely high surface tension at room temperature, which will spontaneously form a spherical shape and are difficult to form the shape required by stretchable devices, which is the biggest obstacle to their development in this emerging field. Therefore, the emphasis is placed on the principle of overcoming the high surface tension in this review, and various methods of using liquid metals to fabricate stretchable electronic devices based on these principles have been linked. Liquid metals show promise in the convenience of sensing, energy harvesting, etc. The existing challenges and opportunities are also discussed here. |
---|---|
ISSN: | 2095-8226 2199-4501 |
DOI: | 10.1007/s40843-021-2023-x |