An Approximate Method for Solving Boundary Value Problems with Moving Boundaries by Reduction to Integro-Differential Equations

The problem of vibrations of objects with moving boundaries formulated as a differential equation with boundary and initial conditions is a nonclassical generalization of a hyperbolic problem. To facilitate the construction of the solution to this problem and to justify the choice of the form of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2022-06, Vol.62 (6), p.945-954
Hauptverfasser: Litvinov, V. L., Litvinova, K. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of vibrations of objects with moving boundaries formulated as a differential equation with boundary and initial conditions is a nonclassical generalization of a hyperbolic problem. To facilitate the construction of the solution to this problem and to justify the choice of the form of the solution, equivalent integro-differential equations with symmetric and time-dependent kernels and time-varying integration limits are constructed. The advantages of the method of integro-differential equations are revealed in the transition to more complex dynamic systems carrying concentrated masses vibrating under the action of moving loads. The method is extended to a wider class of model boundary value problems that take into account bending stiffness, the resistance of the external environment, and the stiffness of the base of a vibrating object. The solution is given in dimensionless variables and is accurate up to second-order values with respect to small parameters characterizing the velocity of the boundary. An approximate solution is found for the problem of transverse vibrations of a hoisting rope having bending stiffness, one end of which is wound on a drum and a load is fixed on the other.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542522060112