On restricted functional inequalities associated with quadratic functional equations

In this paper it is proved that, for a function f : X → E mapping from a normed linear space X into an inner product space E , the functional inequality ‖ 2 f ( x ) + 2 f ( y ) - f ( x - y ) ‖ ⩽ ‖ f ( x + y ) ‖ , ‖ x ‖ + ‖ y ‖ ⩾ d for some d > 0 , implies f is quadratic. Other types of functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2022, Vol.96 (4), p.763-772
Hauptverfasser: Tareeghee, M. A., Najati, A., Abdollahpour, M. R., Noori, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 4
container_start_page 763
container_title Aequationes mathematicae
container_volume 96
creator Tareeghee, M. A.
Najati, A.
Abdollahpour, M. R.
Noori, B.
description In this paper it is proved that, for a function f : X → E mapping from a normed linear space X into an inner product space E , the functional inequality ‖ 2 f ( x ) + 2 f ( y ) - f ( x - y ) ‖ ⩽ ‖ f ( x + y ) ‖ , ‖ x ‖ + ‖ y ‖ ⩾ d for some d > 0 , implies f is quadratic. Other types of functional inequalities related to the quadratic functional equation have also been investigated. Besides we establish the Hyers–Ulam stability on restricted domains, and we improve the bounds and thus the stability results obtained in Jung (J Math Anal Appl 222:126–137, 1998) and Rassias (J Math Anal Appl 276: 747–762, 2002). Finally we apply our recent results to the asymptotic behavior of quadratic functional equations of different types.
doi_str_mv 10.1007/s00010-022-00872-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689154924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689154924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cf88cac107c1d0ab86dfcdaa81689973d8e780f496cb0fa201209b6400bbaaa53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gku90kRylqhUIv9Rxms4mm1N02ySL-e7OuoCdPM8N87zHzCLlmcMsAxF0EAAYUOKcAUnAqT8iMVRyoVFCektm4pwoW1Tm5iHGXJy5EOSPbTVcEG1PwJtm2cENnku873Be-s8cB9z55GwuMsTceR-TDp7cib9qAyZu_ipEf23hJzhzuo736qXPy8viwXa7oevP0vLxfU1MylahxUho0DIRhLWAj69aZFlGyWiolylZaIcFVqjYNOOT5ZlBNXQE0DSIuyjm5mXwPoT8O-Qu964eQT4maZwu2qBSvMsUnyoQ-xmCdPgT_juFTM9BjenpKT-f09Hd6WmZROYlihrtXG36t_1F9ARYbdEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689154924</pqid></control><display><type>article</type><title>On restricted functional inequalities associated with quadratic functional equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tareeghee, M. A. ; Najati, A. ; Abdollahpour, M. R. ; Noori, B.</creator><creatorcontrib>Tareeghee, M. A. ; Najati, A. ; Abdollahpour, M. R. ; Noori, B.</creatorcontrib><description>In this paper it is proved that, for a function f : X → E mapping from a normed linear space X into an inner product space E , the functional inequality ‖ 2 f ( x ) + 2 f ( y ) - f ( x - y ) ‖ ⩽ ‖ f ( x + y ) ‖ , ‖ x ‖ + ‖ y ‖ ⩾ d for some d &gt; 0 , implies f is quadratic. Other types of functional inequalities related to the quadratic functional equation have also been investigated. Besides we establish the Hyers–Ulam stability on restricted domains, and we improve the bounds and thus the stability results obtained in Jung (J Math Anal Appl 222:126–137, 1998) and Rassias (J Math Anal Appl 276: 747–762, 2002). Finally we apply our recent results to the asymptotic behavior of quadratic functional equations of different types.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-022-00872-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Asymptotic properties ; Combinatorics ; Functional equations ; Inequalities ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Quadratic equations ; Stability</subject><ispartof>Aequationes mathematicae, 2022, Vol.96 (4), p.763-772</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cf88cac107c1d0ab86dfcdaa81689973d8e780f496cb0fa201209b6400bbaaa53</citedby><cites>FETCH-LOGICAL-c319t-cf88cac107c1d0ab86dfcdaa81689973d8e780f496cb0fa201209b6400bbaaa53</cites><orcidid>0000-0001-7563-0507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-022-00872-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-022-00872-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tareeghee, M. A.</creatorcontrib><creatorcontrib>Najati, A.</creatorcontrib><creatorcontrib>Abdollahpour, M. R.</creatorcontrib><creatorcontrib>Noori, B.</creatorcontrib><title>On restricted functional inequalities associated with quadratic functional equations</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>In this paper it is proved that, for a function f : X → E mapping from a normed linear space X into an inner product space E , the functional inequality ‖ 2 f ( x ) + 2 f ( y ) - f ( x - y ) ‖ ⩽ ‖ f ( x + y ) ‖ , ‖ x ‖ + ‖ y ‖ ⩾ d for some d &gt; 0 , implies f is quadratic. Other types of functional inequalities related to the quadratic functional equation have also been investigated. Besides we establish the Hyers–Ulam stability on restricted domains, and we improve the bounds and thus the stability results obtained in Jung (J Math Anal Appl 222:126–137, 1998) and Rassias (J Math Anal Appl 276: 747–762, 2002). Finally we apply our recent results to the asymptotic behavior of quadratic functional equations of different types.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Combinatorics</subject><subject>Functional equations</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quadratic equations</subject><subject>Stability</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-gku90kRylqhUIv9Rxms4mm1N02ySL-e7OuoCdPM8N87zHzCLlmcMsAxF0EAAYUOKcAUnAqT8iMVRyoVFCektm4pwoW1Tm5iHGXJy5EOSPbTVcEG1PwJtm2cENnku873Be-s8cB9z55GwuMsTceR-TDp7cib9qAyZu_ipEf23hJzhzuo736qXPy8viwXa7oevP0vLxfU1MylahxUho0DIRhLWAj69aZFlGyWiolylZaIcFVqjYNOOT5ZlBNXQE0DSIuyjm5mXwPoT8O-Qu964eQT4maZwu2qBSvMsUnyoQ-xmCdPgT_juFTM9BjenpKT-f09Hd6WmZROYlihrtXG36t_1F9ARYbdEc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Tareeghee, M. A.</creator><creator>Najati, A.</creator><creator>Abdollahpour, M. R.</creator><creator>Noori, B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7563-0507</orcidid></search><sort><creationdate>2022</creationdate><title>On restricted functional inequalities associated with quadratic functional equations</title><author>Tareeghee, M. A. ; Najati, A. ; Abdollahpour, M. R. ; Noori, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cf88cac107c1d0ab86dfcdaa81689973d8e780f496cb0fa201209b6400bbaaa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Combinatorics</topic><topic>Functional equations</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quadratic equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tareeghee, M. A.</creatorcontrib><creatorcontrib>Najati, A.</creatorcontrib><creatorcontrib>Abdollahpour, M. R.</creatorcontrib><creatorcontrib>Noori, B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tareeghee, M. A.</au><au>Najati, A.</au><au>Abdollahpour, M. R.</au><au>Noori, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On restricted functional inequalities associated with quadratic functional equations</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2022</date><risdate>2022</risdate><volume>96</volume><issue>4</issue><spage>763</spage><epage>772</epage><pages>763-772</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>In this paper it is proved that, for a function f : X → E mapping from a normed linear space X into an inner product space E , the functional inequality ‖ 2 f ( x ) + 2 f ( y ) - f ( x - y ) ‖ ⩽ ‖ f ( x + y ) ‖ , ‖ x ‖ + ‖ y ‖ ⩾ d for some d &gt; 0 , implies f is quadratic. Other types of functional inequalities related to the quadratic functional equation have also been investigated. Besides we establish the Hyers–Ulam stability on restricted domains, and we improve the bounds and thus the stability results obtained in Jung (J Math Anal Appl 222:126–137, 1998) and Rassias (J Math Anal Appl 276: 747–762, 2002). Finally we apply our recent results to the asymptotic behavior of quadratic functional equations of different types.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-022-00872-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7563-0507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-9054
ispartof Aequationes mathematicae, 2022, Vol.96 (4), p.763-772
issn 0001-9054
1420-8903
language eng
recordid cdi_proquest_journals_2689154924
source SpringerLink Journals - AutoHoldings
subjects Analysis
Asymptotic properties
Combinatorics
Functional equations
Inequalities
Mathematical analysis
Mathematics
Mathematics and Statistics
Quadratic equations
Stability
title On restricted functional inequalities associated with quadratic functional equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20restricted%20functional%20inequalities%20associated%20with%20quadratic%20functional%20equations&rft.jtitle=Aequationes%20mathematicae&rft.au=Tareeghee,%20M.%20A.&rft.date=2022&rft.volume=96&rft.issue=4&rft.spage=763&rft.epage=772&rft.pages=763-772&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-022-00872-8&rft_dat=%3Cproquest_cross%3E2689154924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689154924&rft_id=info:pmid/&rfr_iscdi=true