On restricted functional inequalities associated with quadratic functional equations
In this paper it is proved that, for a function f : X → E mapping from a normed linear space X into an inner product space E , the functional inequality ‖ 2 f ( x ) + 2 f ( y ) - f ( x - y ) ‖ ⩽ ‖ f ( x + y ) ‖ , ‖ x ‖ + ‖ y ‖ ⩾ d for some d > 0 , implies f is quadratic. Other types of functional...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2022, Vol.96 (4), p.763-772 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper it is proved that, for a function
f
:
X
→
E
mapping from a normed linear space
X
into an inner product space
E
, the functional inequality
‖
2
f
(
x
)
+
2
f
(
y
)
-
f
(
x
-
y
)
‖
⩽
‖
f
(
x
+
y
)
‖
,
‖
x
‖
+
‖
y
‖
⩾
d
for some
d
>
0
, implies
f
is quadratic. Other types of functional inequalities related to the quadratic functional equation have also been investigated. Besides we establish the Hyers–Ulam stability on restricted domains, and we improve the bounds and thus the stability results obtained in Jung (J Math Anal Appl 222:126–137, 1998) and Rassias (J Math Anal Appl 276: 747–762, 2002). Finally we apply our recent results to the asymptotic behavior of quadratic functional equations of different types. |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-022-00872-8 |