Long-Term Urban Traffic Speed Prediction With Deep Learning on Graphs

Traffic speed prediction is among the foundations of advanced traffic management and the gradual deployment of internet of things sensors is empowering data-driven approaches for the prediction. Nonetheless, existing research studies mainly focus on short-term traffic prediction that covers up to on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.7359-7370
Hauptverfasser: Yu, James J. Q., Markos, Christos, Zhang, Shiyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traffic speed prediction is among the foundations of advanced traffic management and the gradual deployment of internet of things sensors is empowering data-driven approaches for the prediction. Nonetheless, existing research studies mainly focus on short-term traffic prediction that covers up to one hour forecast into the future. Previous long-term prediction approaches experience error accumulation, exposure bias, or generate future data of low granularity. In this paper, a novel data-driven, long-term, high-granularity traffic speed prediction approach is proposed based on recent development of graph deep learning techniques. The proposed model utilizes a predictor-regularizer architecture to embed the spatial-temporal data correlation of traffic dynamics in the prediction process. Graph convolutions are widely adopted in both sub-networks for geometrical latent information extraction and reconstruction. To assess the performance of the proposed approach, comprehensive case studies are conducted on real-world datasets and consistent improvements can be observed over baselines. This work is among the pioneering efforts on network-wide long-term traffic speed prediction. The design principles of the proposed approach can serve as a reference point for future transportation research leveraging deep learning.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2021.3069234