The Differential Spectrum of the Power Mapping x pn −3
Let [Formula Omitted] be a positive integer and [Formula Omitted] a prime. The power mapping [Formula Omitted] over [Formula Omitted] has desirable differential properties, and its differential spectra for [Formula Omitted] have been determined. In this paper, for any odd prime [Formula Omitted], by...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-01, Vol.68 (8), p.5535 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let [Formula Omitted] be a positive integer and [Formula Omitted] a prime. The power mapping [Formula Omitted] over [Formula Omitted] has desirable differential properties, and its differential spectra for [Formula Omitted] have been determined. In this paper, for any odd prime [Formula Omitted], by investigating certain quadratic character sums and some equations over [Formula Omitted], we determine the differential spectrum of [Formula Omitted] with a unified approach. The obtained result shows that for any given odd prime [Formula Omitted], the differential spectrum can be expressed explicitly in terms of [Formula Omitted]. Compared with previous results, a special elliptic curve over [Formula Omitted] plays an important role in our computation for the general case [Formula Omitted]. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2022.3162334 |