Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials
The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we de...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-07, Vol.24 (27), p.16774-16783 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16783 |
---|---|
container_issue | 27 |
container_start_page | 16774 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Wei, Anran Ye, Han Guo, Fenglin |
description | The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we develop a theoretical model to describe the mechanical properties of SF-2DNMs based on the shear-lag analysis. With this model, the load transfer behaviors in SF-2DNMs are demonstrated. The Young's modulus and tensile strength of SF-2DNMs are found to increase and then converge with the fold length, which agree well with the results of molecular dynamics simulations. Moreover, the phase diagrams of failure modes are obtained for SF-2DNMs and their stacked assemblies, providing design criteria for the geometries of SF-2DNMs. The structureproperty relationship revealed in our study will provide useful guidelines for the structure design and property optimization of SF-2DNMs.
A theoretical model is developed to describe the role of folded nanostructures in the overall mechanical properties of self-folded 2D nanomaterial assemblies, with validations by MD simulations. |
doi_str_mv | 10.1039/d2cp00508e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2688598991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688598991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d4b68cef9e1364f6b52cba5f72bbe10b2144d4bce5107a03aa2418d3957313263</originalsourceid><addsrcrecordid>eNpd0ctLxDAQBvAgCq6rF-9CwYsI1Tz7OMq6PmBBwce1pMkEu7RJTVLE_964KwqeZg4_ho9vEDom-IJgVl9qqkaMBa5gB80IL1he44rv_u5lsY8OQlhjjIkgbIZen6KfVJw85BpGsBpszAZQb9J2SvbZ6N0IPnYQMmeyAL3Jjes16Cx-uFx3A9jQOZukldYNMoLvZB8O0Z5JA45-5hy93CyfF3f56uH2fnG1yhUjPOaat0WlwNRAWMFN0QqqWilMSdsWCG4p4TwZBYLgUmImJeWk0qwWJSOMFmyOzrZ3U873CUJshi4o6HtpwU2hoUXFUzFc4ERP_9G1m3xKvlGVqKu6Jkmdb5XyLgQPphl9N0j_2RDcfFfcXNPF46biZcInW-yD-nV_L2Bffn141Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688598991</pqid></control><display><type>article</type><title>Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wei, Anran ; Ye, Han ; Guo, Fenglin</creator><creatorcontrib>Wei, Anran ; Ye, Han ; Guo, Fenglin</creatorcontrib><description>The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we develop a theoretical model to describe the mechanical properties of SF-2DNMs based on the shear-lag analysis. With this model, the load transfer behaviors in SF-2DNMs are demonstrated. The Young's modulus and tensile strength of SF-2DNMs are found to increase and then converge with the fold length, which agree well with the results of molecular dynamics simulations. Moreover, the phase diagrams of failure modes are obtained for SF-2DNMs and their stacked assemblies, providing design criteria for the geometries of SF-2DNMs. The structureproperty relationship revealed in our study will provide useful guidelines for the structure design and property optimization of SF-2DNMs.
A theoretical model is developed to describe the role of folded nanostructures in the overall mechanical properties of self-folded 2D nanomaterial assemblies, with validations by MD simulations.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp00508e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Assemblies ; Design criteria ; Design optimization ; Failure modes ; Load transfer ; Mechanical properties ; Modulus of elasticity ; Molecular dynamics ; Nanomaterials ; Phase diagrams ; Tensile strength ; Two dimensional materials</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-07, Vol.24 (27), p.16774-16783</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-d4b68cef9e1364f6b52cba5f72bbe10b2144d4bce5107a03aa2418d3957313263</citedby><cites>FETCH-LOGICAL-c314t-d4b68cef9e1364f6b52cba5f72bbe10b2144d4bce5107a03aa2418d3957313263</cites><orcidid>0000-0002-9119-4781 ; 0000-0002-3358-2866 ; 0000-0002-9473-3664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wei, Anran</creatorcontrib><creatorcontrib>Ye, Han</creatorcontrib><creatorcontrib>Guo, Fenglin</creatorcontrib><title>Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials</title><title>Physical chemistry chemical physics : PCCP</title><description>The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we develop a theoretical model to describe the mechanical properties of SF-2DNMs based on the shear-lag analysis. With this model, the load transfer behaviors in SF-2DNMs are demonstrated. The Young's modulus and tensile strength of SF-2DNMs are found to increase and then converge with the fold length, which agree well with the results of molecular dynamics simulations. Moreover, the phase diagrams of failure modes are obtained for SF-2DNMs and their stacked assemblies, providing design criteria for the geometries of SF-2DNMs. The structureproperty relationship revealed in our study will provide useful guidelines for the structure design and property optimization of SF-2DNMs.
A theoretical model is developed to describe the role of folded nanostructures in the overall mechanical properties of self-folded 2D nanomaterial assemblies, with validations by MD simulations.</description><subject>Assemblies</subject><subject>Design criteria</subject><subject>Design optimization</subject><subject>Failure modes</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Nanomaterials</subject><subject>Phase diagrams</subject><subject>Tensile strength</subject><subject>Two dimensional materials</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0ctLxDAQBvAgCq6rF-9CwYsI1Tz7OMq6PmBBwce1pMkEu7RJTVLE_964KwqeZg4_ho9vEDom-IJgVl9qqkaMBa5gB80IL1he44rv_u5lsY8OQlhjjIkgbIZen6KfVJw85BpGsBpszAZQb9J2SvbZ6N0IPnYQMmeyAL3Jjes16Cx-uFx3A9jQOZukldYNMoLvZB8O0Z5JA45-5hy93CyfF3f56uH2fnG1yhUjPOaat0WlwNRAWMFN0QqqWilMSdsWCG4p4TwZBYLgUmImJeWk0qwWJSOMFmyOzrZ3U873CUJshi4o6HtpwU2hoUXFUzFc4ERP_9G1m3xKvlGVqKu6Jkmdb5XyLgQPphl9N0j_2RDcfFfcXNPF46biZcInW-yD-nV_L2Bffn141Q</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Wei, Anran</creator><creator>Ye, Han</creator><creator>Guo, Fenglin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9119-4781</orcidid><orcidid>https://orcid.org/0000-0002-3358-2866</orcidid><orcidid>https://orcid.org/0000-0002-9473-3664</orcidid></search><sort><creationdate>20220713</creationdate><title>Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials</title><author>Wei, Anran ; Ye, Han ; Guo, Fenglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d4b68cef9e1364f6b52cba5f72bbe10b2144d4bce5107a03aa2418d3957313263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assemblies</topic><topic>Design criteria</topic><topic>Design optimization</topic><topic>Failure modes</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Nanomaterials</topic><topic>Phase diagrams</topic><topic>Tensile strength</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Anran</creatorcontrib><creatorcontrib>Ye, Han</creatorcontrib><creatorcontrib>Guo, Fenglin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Anran</au><au>Ye, Han</au><au>Guo, Fenglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-07-13</date><risdate>2022</risdate><volume>24</volume><issue>27</issue><spage>16774</spage><epage>16783</epage><pages>16774-16783</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we develop a theoretical model to describe the mechanical properties of SF-2DNMs based on the shear-lag analysis. With this model, the load transfer behaviors in SF-2DNMs are demonstrated. The Young's modulus and tensile strength of SF-2DNMs are found to increase and then converge with the fold length, which agree well with the results of molecular dynamics simulations. Moreover, the phase diagrams of failure modes are obtained for SF-2DNMs and their stacked assemblies, providing design criteria for the geometries of SF-2DNMs. The structureproperty relationship revealed in our study will provide useful guidelines for the structure design and property optimization of SF-2DNMs.
A theoretical model is developed to describe the role of folded nanostructures in the overall mechanical properties of self-folded 2D nanomaterial assemblies, with validations by MD simulations.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp00508e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9119-4781</orcidid><orcidid>https://orcid.org/0000-0002-3358-2866</orcidid><orcidid>https://orcid.org/0000-0002-9473-3664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-07, Vol.24 (27), p.16774-16783 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_journals_2688598991 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Assemblies Design criteria Design optimization Failure modes Load transfer Mechanical properties Modulus of elasticity Molecular dynamics Nanomaterials Phase diagrams Tensile strength Two dimensional materials |
title | Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-dependent%20mechanical%20properties%20of%20self-folded%20two-dimensional%20nanomaterials&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wei,%20Anran&rft.date=2022-07-13&rft.volume=24&rft.issue=27&rft.spage=16774&rft.epage=16783&rft.pages=16774-16783&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp00508e&rft_dat=%3Cproquest_rsc_p%3E2688598991%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688598991&rft_id=info:pmid/&rfr_iscdi=true |