Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials

The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-07, Vol.24 (27), p.16774-16783
Hauptverfasser: Wei, Anran, Ye, Han, Guo, Fenglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we develop a theoretical model to describe the mechanical properties of SF-2DNMs based on the shear-lag analysis. With this model, the load transfer behaviors in SF-2DNMs are demonstrated. The Young's modulus and tensile strength of SF-2DNMs are found to increase and then converge with the fold length, which agree well with the results of molecular dynamics simulations. Moreover, the phase diagrams of failure modes are obtained for SF-2DNMs and their stacked assemblies, providing design criteria for the geometries of SF-2DNMs. The structureproperty relationship revealed in our study will provide useful guidelines for the structure design and property optimization of SF-2DNMs. A theoretical model is developed to describe the role of folded nanostructures in the overall mechanical properties of self-folded 2D nanomaterial assemblies, with validations by MD simulations.
ISSN:1463-9076
1463-9084
DOI:10.1039/d2cp00508e